・论著・

丹酚酸 A 对氧糖剥夺诱导损伤的人脑微血管内皮细胞血管 新生能力的保护作用及机制

张森¹,刘成娣¹,孔德文¹,蒋楠^{1,2},孔令雷¹,杜冠华¹
(1.中国医学科学院北京协和医学院药物研究所,药物靶点研究与新药筛选北京市重点实验室, 北京 100050; 2.河南大学药学院,河南 开封 475004)

摘要:目的 探讨丹酚酸A(SAA)对血管内皮细胞低氧损伤后体外血管新生能力的作用及其机制。 方法 采用氧糖剥夺(OGD)的方法构建人脑微血管内皮细胞(HBMEC)缺氧损伤模型,CCK-8法检测OGD 2,4,6,8和10h细胞存活率,确定OGD时间。HBMEC分为细胞对照组、OGD组、OGD+SAA 0.3,1.0和 3.0 µmol·L⁻¹组及 OGD+依达拉奉 10 µmol·L⁻¹组, OGD 6 h 后, 用 CCK-8 法检测细胞存活率; Matrigel 管腔 形成实验观察OGD 2~10 h 管腔形成; OGD 6 h 后, 检测管腔节点数、网眼数、分支数以及管腔长度; EdU 掺入 实验检测细胞增殖,划痕实验检测细胞迁移距离。HBMEC分为细胞对照组、OGD组、OGD+SAA 3.0 μ mol·L⁻¹ 组和OGD+依达拉奉10 µmol·L⁻¹组,OGD 6 h后,Western印迹实验检测低氧诱导因子1a(HIF-1a)、血管 内皮生长因子A(VEGFA)及其受体VEGFR2蛋白表达水平及磷脂酰肌醇-3-激酶/蛋白激酶B/哺乳动物雷 帕霉素靶蛋白(PI3K/Akt/mTOR)信号通路蛋白磷酸化水平。结果 OGD 6 h 细胞存活率为(56±6)%,确定 为后续OGD时间。与细胞对照组相比,OGD组细胞存活率明显降低,形成管腔的节点数、网眼数、分支数 以及管腔长度均显著减少(P<0.01, P<0.05), EdU阳性细胞比例和细胞迁移距离也明显下降(P<0.01)。与 OGD组相比,OGD+SAA 3.0 µmol·L⁻¹组和 OGD+依达拉奉 10 µmol·L⁻¹组细胞存活率明显提高(P<0.05), 形成管腔的节点数、网眼数、分支数以及管腔长度均显著升高(P<0.01, P<0.05), EdU阳性细胞比例和细胞 迁移距离也明显增加(P<0.01, P<0.05);Western 印迹结果显示,与OGD组相比,OGD+SAA 3.0 µmol·L⁻¹ 组HIF-1a, VEGFA和VEGFR2蛋白表达显著增加(P<0.01, P<0.05), PI3K, Akt和mTOR磷酸化水平明显 升高(P<0.05)。结论 SAA可能通过激活HIF-1α/VEGFA/VEGFR2及其下游信号通路PI3K/Akt/mTOR发 挥内皮细胞保护和促进血管生成的作用。

关键词: 丹酚酸 A; 脑微血管内皮细胞; 血管新生; 低氧诱导因子 1α; 血管内皮生长因子 A 中图分类号: R285.5R, R966 文献标志码: A 文章编号: 1000-3002-(2022)03-0161-09 **DOI**: 10.3867/j.issn.1000-3002.2022.03.001

目前脑卒中的临床治疗策略包括溶栓、治疗中风 相关并发症和预防复发^[1]。大多数脑卒中患者都有功 能缺损^[2]。卒中后血管新生是改善长期预后的重要环 节^[3],在脑缺血康复治疗中的作用越来越受到重视。

缺血性脑卒中脑梗死区血液供应严重减少,引 起细胞死亡,导致不可逆损伤^[4]。越来越多的证据 表明,缺血性脑损伤可通过恢复脑血流供应来挽救 受损的神经元,减轻神经功能损害^[5]。药物溶栓和 机械取栓可迅速恢复血液供应,但由于治疗窗狭窄 和出血转化的副作用,大多数患者无法及时接受有 效的溶栓治疗。通过促进血管新生发挥脑保护作 用已成为脑缺血治疗的新策略^[6]。血管新生,即通 过内皮细胞增殖、黏附、迁移和中空管腔形成,最终 从已有血管中长出新的毛细血管,增加血管密度和 脑血流量^[7-8],恢复缺血脑组织的氧气和营养供应, 并作为神经元迁移的支架,促进神经再生和功能恢 复^[3-5,9-10]。新生血管也是清除坏死脑组织的关键, 为梗死后神经再生和突触重塑提供适宜的环境。 研究表明,脑卒中后,缺血半暗带中的内皮细胞、神 经元和胶质细胞等释放血管生成因子,诱导内皮细 胞增殖和迁移以形成新血管,半暗带内的新生血管

基金项目:国家自然科学基金(82004071);北京市自然科学基金(7182113);国家科技重大专项(2018ZX09711001-009-009)

作者简介:张森,硕士研究生,主要从事神经药理学及新药 发现研究。

通讯作者: 孔令雷, E-mail: konglinglei@imm.ac.cn; 杜冠华, E-mail: dugh@imm.ac.cn

数量与患者生存期相关^[11]。有研究表明,随着再灌 注时间的延长,缺血半暗带内的新生血管逐渐崩 解^[12],血管密度降低,因此脑缺血引起的代偿性血 管生成不足以支持受损脑组织修复和神经功能恢 复^[13]。因此,研发有效促进血管新生的药物,可能 是未来改善脑卒中预后的有效策略。

丹酚酸A(salvianolic acid A, SAA)是从丹参 中提取的水溶性化合物,具有多种药理活性,包括 抗氧化应激^[14]、抗凋亡^[15-17]、抗炎^[17-19]和神经血管 保护^[20-21]作用。已有研究报道,SAA可显著减少脑 缺血再灌注大鼠的脑梗死体积,减轻炎症反应并维 持血脑屏障完整性^[18],从而改善神经功能,改善预 后。但SAA是否能够促进脑微血管内皮细胞增殖与 血管新生而发挥保护作用尚不清楚。本研究采用体 外培养人脑微血管内皮细胞(human brain microvascular endothelial cell,HBMEC)建立氧-糖剥夺 (oxygen-glucose deprivation,OGD)模型,采用管 腔形成实验模拟体外血管生成的动态过程,研究 SAA对OGD损伤后HBMEC增殖及体外血管新生 能力的影响,并初步探讨其可能的机制。

1 材料与方法

1.1 药物、试剂和主要仪器

SAA(HPLC纯度>99%,中国医学科学院协和 医院药物研究所自制);依达拉奉(edaravone)注射 液(江苏先声药业有限公司,批号:H20031342 80-190907),作为阳性对照药。胎牛血清、RPMI-1640 基础培养基和无糖 RPMI-1640 培养基(美国 Gibco 公司); CCK-8试剂盒(上海 Beyotime 公司); EdU 细胞增殖检测试剂盒(广州 RiboBio 公司); Matrigel 基质胶(美国BD Biosciences公司);细胞裂解液和 BCA蛋白质定量试剂盒(北京普利来公司);兔抗人 低氧诱导因子 1α (hypoxia inducible factor - 1α , HIF-1α)单克隆抗体、兔抗人血管内皮生长因子A (vascular endothelial growth factor-A, VEGFA)和 VEGF 受体 2(VEGF receptor-2, VEGFR2) 单克隆 抗体(美国Abcam公司);小鼠抗人β肌动蛋白单克 隆抗体、兔抗人磷脂酰肌醇-3-激酶(phosphatidylinositol-3-kinase, PI3K)、磷酸化 PI3K (phosphorylated PI3K, p-PI3K)、蛋白激酶 B (protein kinase B, Akt)、p-Akt、哺乳动物雷帕霉素靶蛋白 (mammalian target of Rapamycin, mTOR)和 p-mTOR 单克隆抗体(美国CST公司);辣根过氧化物酶标记 的山羊抗兔 lgG 抗体和山羊抗小鼠 lgG 抗体(北京

康为世纪有限公司)

MCO-175 细胞培养箱(美国 Sanyo 公司); 8000WJ/IR/N2三气培养箱(美国 Thermo Scientific 公司); SpectraMax M5 酶标仪(美国 Molecular Device 公司);荧光显微镜(日本 Nikon 公司); Tanon-5200成像系统(上海 Tanon 公司)。

1.2 细胞和细胞培养

HBMEC(中国医学科学院基础医学研究所), 用含10%胎牛血清的RPMI-1640培养基,在常氧条 件(95% O₂,5% CO₂)和37℃条件下培养。选择对 数生长期细胞进行实验。

1.3 OGD 模型建立和细胞分组

将对数生长期的 HBMEC 接种于 96 孔板或 6孔板中,培养至贴壁。正常对照组始终使用完全 培养基在常氧、37℃条件下培养,OGD 组细胞用 37℃预热的生理盐水洗涤2次后更换为无糖 RPMI-1640培养基,置于三气培养箱中以低氧条件 (94% N₂,1% O₂,5% CO₂)培养。分别于2,4,6,8 和10 h采用CCK-8法检测细胞存活率。

细胞分组:① 细胞对照组、OGD组、OGD+ SAA 0.3,1.0和3.0 μmol·L⁻¹组及OGD+依达拉奉 10 μmol·L⁻¹组;② 细胞对照组、OGD组、OGD+SAA 3 μmol·L⁻¹组和OGD+依达拉奉 10 μmol·L⁻¹组。

1.4 CCK-8法检测细胞存活率

将对数生长期 HBMEC 以密度 2×10⁸ L⁻¹ 接种在 96 孔板中,每孔 100 μL,培养至贴壁。细胞分组同 1.3 中①,各组细胞在三气培养箱中 OGD 6 h 后,将 10 μL CCK-8 溶液添加到 96 孔培养板中,37℃孵育 1~4 h。采用 SpectraMax M5 酶标仪于 450 nm 处 检测吸光度(*A*_{450 nm})值。细胞存活率(%)=(用药组 *A*_{450 nm} -空白对照组 *A*_{450 nm})/(细胞对照组 *A*_{450 nm} -空 白对照组 *A*_{450 nm})×100%。

1.5 管腔形成实验检测细胞管腔的节点数、网眼数、 分支数和管腔长度

向96孔板中加入无生长因子的Matrigel基质 胶(每孔50 µL),在37℃下凝固1h,并将对数生长 期HBMEC以2×10⁸L⁻¹的密度每孔100 µL,接种到 铺有基质胶的96孔板中。细胞分组同1.3 中①,分 别于2,4,6,8和10 h用显微镜拍摄内皮细胞管腔形 成的情况。使用Image J软件计算管腔的节点、网 眼和分支数目以及管腔长度。实验重复5次。

1.6 EdU掺入实验检测细胞增殖

将对数生长期 HBMEC 以密度 2×10⁶ L⁻¹每孔 100 μL,接种到 96 孔板中,细胞分组同 1.3 中①, OGD 损伤 6 h后,根据说明书使用 EdU 细胞增殖检

· 163 ·

测试剂盒进行 EdU 掺入实验分析。使用荧光显微 镜拍摄图像,并计算 EdU 阳性细胞数占总细胞数百 分数。

1.7 划痕实验检测细胞迁移距离

将对数生长期 HBMEC 以密度 2×10⁸ L⁻¹每孔 3 mL接种至6孔板,在形成单层细胞层后,用10 μL 枪头尖端垂直于板底划出3道平行的划痕,并确保 每个划痕的宽度尽可能一致。细胞分组同1.3 中 ①,在 OGD 前(0 h)和后(6 h)用显微镜拍摄图像。 使用 Image J 软件量化迁移距离。迁移距离(μm)= 初始划痕宽度(W_{0h})-实验终点划痕宽度(W_{6h})。

Western 印迹法检测细胞 HIF-1α, VEGFA 和 VEGFR2 蛋白表达水平及 PI3K/Akt/mTOR 信号通 路蛋白磷酸化水平

将对数生长期HBMEC以密度2×10°L⁻¹接种至 6孔板,每孔3mL,细胞分组同1.3中②,OGD损伤 6h后,弃掉细胞培养基,加入裂解液冰上裂解 15 min,收集细胞,4℃,12000×g离心20 min,吸取 上清。使用蛋白质定量试剂盒,基于BCA法测定蛋 白质浓度。使用聚丙烯酰胺凝胶电泳(SDS-PAGE) 分离蛋白质样品,并将其转移到PVDF膜上。用5% 脱脂奶粉封闭2h后,将膜与相应的一抗[抗HIF-1 α 、 VEGFA、VEGFR2、PI3K、p-PI3K、Akt、p-Akt、mTOR、 p-mTOR 和β肌动蛋白(均1:1000)]在4℃下孵育 过夜。然后与二抗(1:5000)在室温下培养2h。使 用增强化学发光法和 Tanon 4600 成像系统对条带 进行成像,以目标蛋白条带积分吸光度与内标条带 积分吸光度比值表示目标蛋白相对表达水平,以磷酸 化蛋白条带积分吸光度与总蛋白条带积分吸光度比 值表示蛋白磷酸化水平。

1.9 统计学分析

采用 GraphPad Prism 7.00 软件进行统计分析,实验结果均以 x±s 表示。使用单因素方差分析和 Dunnett t检验分析各组之间的差异。P<0.05 认为差异有统计学意义。

2 结果

2.1 丹酚酸A对氧糖剥夺诱导损伤的HBMEC细胞 存活率的影响

如图 1A 显示,与细胞对照组相比,OGD 组细胞存活率随 OGD 时间延长显著降低(P<0.05, P<0.01),OGD 损伤 6 h时细胞存活率为细胞对照组的(56±6)%(P<0.01),确定为后续 OGD 时间。如图 1B 显示,SAA 0.3,1.0和3.0 µmol·L⁻¹能够浓度依

赖性地逆转 OGD 对 HBMEC 造成的损伤(*r*=0.99, *P*<0.05),相对于 OGD 组,OGD+SAA 1.0和3.0 μmol·L⁻¹ 组及 OGD+依达拉奉 10 μmol·L⁻¹组细胞存活率显 著提高,分别为细胞对照组的(62±4)%,(68±4)和 68±6)%(*P*<0.05)。</p>

Fig.1 Effect of salvianolic acid A (SAA) on cell viability in human brain microvascular endothelial cells (HB-MECs) after oxygen-glucose deprivation (OGD) injury. A: cell viability of HBMECs at different time points after OGD; B: cell viability of HBMECs after treatment with SAA 0.3, 1.0, 3.0μ mol·L⁻¹ or edaravone 10μ mol·L⁻¹ under OGD condition for 6 h. Cell viability (%)=($A_{450 nm}$ of drug treatment group- $A_{450 nm}$ of blank group)/($A_{450 nm}$ of cell control group- $A_{450 nm}$ of blank group)×100%. $x \pm s$, n=4-5. *P<0.05, *rP<0.01, compared with cell control group; *P<0.05, compared with OGD group.

2.2 丹酚酸 A 对氧糖剥夺诱导损伤的 HBMEC 形成 管腔的节点数、网眼数、分支数和管腔长度的影响

如图2所示,前6h细胞对照组形成管腔的节点数、网眼数、分支数和管腔长度在逐渐升高,随后逐渐降低,第6h时管腔结构开始出现拉长和崩解。与细胞对照组相比,OGD组内皮细胞形成管腔的节点数、网眼数、分支数和管腔长度在每个时间点均明显降低(P<0.05,P<0.01),且分支数在管腔形成2h后即开始降低,网眼数和管腔长度在4h后开始降低,表明OGD后管腔崩解时间提前。OGD+SAA0.3,1.0和3.0 µmol·L⁻¹组形成管腔的节点数、网眼数、分支数和管腔长度的动态变化过程与细胞对照组一致,管腔崩解从6h开始。在6h,相对于OGD组,OGD+SAA3.0 µmol·L⁻¹组管腔形成各指标显著升高

Fig.2 Effect of SAA on numbers of nodes, meshes, branches and length of tubes in HBMECs after OGD injury. The HBMECs in OGD+SAA 0.3, 1.0, 3.0 μ mol·L⁻¹ groups and OGD+edaravone 10 μ mol·L⁻¹ group were treated with SAA 0.3, 1.0, 3.0 μ mol·L⁻¹ or edaravone 10 μ mol·L⁻¹ or edaravone 10 μ mol·L⁻¹ under OGD conditions for 10 h. A: representative images of tube formation. B–I: the numbers of nodes, meshes, branches and the length of tubes over 10 h (B,D,F,H) or at 6 h (C,E,G,I), respectively. $\bar{x} \pm s$, *n*=5. **P*<0.05, ***P*<0.01, compared with cell control group; #*P*<0.05, ##*P*<0.01, compared with OGD group.

(*P*<0.05, *P*<0.01), OGD+依达拉奉 10 μmol·L⁻¹组除 节点数外,其他指标显著升高(*P*<0.05)。

2.3 丹酚酸 A 对氧糖剥夺诱导损伤的 HBMEC 细胞 增殖的影响

EdU 掺入实验结果显示,与细胞对照组相比, OGD 组细胞总数以及 EdU 阳性细胞占总细胞的百分 数明显降低(*P*<0.01),说明 OGD 后 HBMEC 增殖被 抑制。与 OGD 组相比,OGD+SAA 3 μmol・L⁻¹组和 OGD+依达拉奉 10 μmol・L⁻¹组 EdU 阳性细胞的百 分数显著增加(*P*<0.01,*P*<0.05),细胞总数也有增加 的趋势,但无显著性差异(图3)。

2.4 丹酚酸 A 对氧糖剥夺诱导损伤的 HBMEC 细胞 迁移距离的影响

如图4所示,与细胞对照组(155±13)μm相比, OGD 组细胞迁移距离为(82±4)μm,细胞迁移能力 明显降低(*P*<0.01)。与 OGD 组相比,OGD+SAA 3.0 μmol·L⁻¹组和 OGD+依达拉奉 10 μmol·L⁻¹组细 胞迁移距离显著增加(*P*<0.05),分别为 112±15 和 (111±19)μm,部分恢复细胞迁移能力。确定 SAA 3.0 μmol·L⁻¹进行后续机制探索实验。

Fig.3 Effect of SAA on proliferation of HBMECs after OGD injury. The HBMECs in OGD+SAA 0.3, 1.0, 3.0 μ mol·L⁻¹ groups and OGD + edaravone 10 μ mol·L⁻¹ group were treated with SAA 0.3, 1.0, 3.0 μ mol·L⁻¹ or edaravone 10 μ mol·L⁻¹ under OGD conditions for 6 h. A: representative images of EdU incorporation assay; B and C were the semi-quantitative results of A. $\bar{x}\pm s$, n=3. **P< 0.01, compared with cell control group; #P<0.05, ##P<0.01, compared with OGD group.

Fig. 4 Effect of SAA on migration in HBMECs after OGD injury. See Fig. 3 for the cell treatment. A: representative images of migration; B was the quantitative result of A. Migration distance (μ m)=widenth of 0 h-widenth of 6 h. $\bar{x}\pm s$, n=3. **P<0.01, compared with cell control group; *P<0.05, compared with OGD group.

2.5 丹酚酸A对氧糖剥夺诱导损伤的HBMEC细胞 HIF-1α,VEGFA和VEGFR2蛋白表达的影响

Western 印迹实验结果显示,与细胞对照组相 比,OGD组HIF-1α,VEGFA和VEGFR2蛋白表达 水平明显下降(*P*<0.05,*P*<0.01)。与OGD组细胞相 比,OGD+SAA 3.0 μmol·L⁻¹组HIF-1α,VEGFA和 VEGFR2蛋白表达显著上调(P<0.05, P<0.01);依达拉奉对上述蛋白表达也有一定促进作用(图5)。

2.6 丹酚酸A对氧糖剥夺诱导损伤的HBMEC细胞 PI3K,Akt,mTOR蛋白磷酸化水平的影响

如图6所示,与细胞对照组相比,OGD组p-PI3K/ PI3K,p-Akt/Akt和p-mTOR/m-TOR比值显著下降

Fig.5 Effect of SAA on protein expression levels of hypoxia inducible factor- 1α (HIF- $1-\alpha$), vascular endothelial growth factor-A(VEGFA) and VEGF receptor-2(VEGFR2) in HBMECs after OGD injury detected by Western blotting. HBMECs in OGD+SAA group and OGD+edaravone group were treated with SAA 3.0 µmol· L^{-1} or edaravone 10 µmol· L^{-1} under OGD conditions for 6 h. B, C and D were the semi-quantitative results of A. $\bar{x}\pm s$, n=3. *P<0.05, **P<0.01, compared with cell control group; #P<0.05, ##P<0.01, compared with OGD group.

Fig.6 Effect of SAA on phosphorylation levels of phosphatidylinositol-3-kinase (PI3K), protein kinase B (Akt) and mammalian target of Rapamycin (mTOR) in HBMECs after OGD injury detected by Western blotting. See Fig.5 for the cell treatment. B, C and D were the semi-quantitative results of A. $\bar{x}\pm s$, n=3. **P*<0.05, compared with the cell control group; #*P*<0.05, compared with the OGD group.

(*P*<0.05)。与OGD组相比,OGD+SAA 3.0 µmol·L⁻¹ 组p-PI3K/PI3K,p-Akt/Akt和p-mTOR/m-TOR比值 升高(*P*<0.05),表明PI3K/Akt/mTOR信号通路蛋白 磷酸化水平升高;OGD+依达拉奉组p-mTOR/ mTOR比值升高(*P*<0.05),但p-PI3K/PI3K和p-Akt/ Akt比值无明显变化。

3 讨论

本研究结果表明,OGD损伤后 HBMEC 细胞存 活率显著降低,HBMEC 增殖和迁移能力明显下降, 导致管腔形成被显著抑制。SAA 在 0.3 ~ 3 μmol·L⁻¹ 浓度范围内,可以提高 OGD 损伤后细胞存活率,改 善 HBMEC 增殖和迁移能力,进而促进管腔形成,诱 导血管新生,HIF-1α/VEGFA/VEGFR2 表达升高, PI3K,Akt和mTOR磷酸化水平增加。

脑缺血后的血管新生是一个严格调控的多步 骤过程,涉及HBMEC的增殖、迁移、聚集和重排。 在体外细胞实验的血管生成过程中,管腔结构以时 间依赖性形成、拉长,然后崩解^[22]。为了观察管腔 形成过程,本研究连续监测10h,观察HBMEC形成 管腔结构的动态变化。发现HBMEC在接种后6h 内逐渐形成管腔结构,达到最大节点数、网眼数、分 支数和管腔长度,随后管腔逐渐拉长并最终崩解, 表明6h为评价HBMEC血管生成能力的最佳时间 节点。OGD后形成管腔的节点数、网眼数、分支数 和管腔长度在各时间点均显著降低并且更早地发 生崩解,血管生成能力下降,SAA能够增加形成管 腔的节点数、网眼数、分支数和管腔长度,并延缓管 腔崩解,促进血管生成。

内皮细胞增殖和迁移是血管生成的标志之一, 血管生成调节剂对其作用已经得到验证^[23]。本研 究结果表明,OGD损伤后,HBMEC增殖和迁移能 力严重受损,管腔结构形成受阻,血管生成能力下 降。SAA能够改善HBMEC增殖和迁移能力,进而 显著促进管腔形成,延缓管腔崩解,恢复血管生成 能力。上述结果表明,SAA明显改善缺氧损伤后内 皮细胞的血管生成能力。

HIF-1α是缺氧诱导血管生成的关键因子,可作 为转录因子与VEGFA启动子结合^[24],诱导VEGFA 表达^[25]。VEGFA属于VEGF家族,作为血管内皮细胞 特异性有丝分裂原,是诱导血管生成的关键信号^[26]。 VEGFA通过与血管内皮细胞表面的VEGFR2结合 来介导下游信号通路PI3K/Akt/mTOR的磷酸化激 活,促进内皮细胞增殖、黏附、迁移、存活和侧支血管 的形成,促进血管生成^[27]。抑制HIF-1α的降解,可通 过激活VEGFA介导的内源性血管生成促进缺血性 脑卒中小鼠的功能恢复^[28]。SAA能够促进HIF-1α/ VEGFA/VEGFR2的表达,进一步增强下游信号通路 PI3K/Akt/mTOR的磷酸化激活,维持HBMEC的存 活,促进细胞的增殖和血管生成。

依达拉奉是临床上常用的脑保护剂之一,可促 进脑缺血后血管新生,但其作用机制尚不明确^[29]。本 研究结果表明,依达拉奉 10 μmol·L⁻¹可恢复 OGD 后 HBMEC 的增殖、迁移和管腔形成能力,作用与 SAA 3 μmol·L⁻¹相当,提示在一定剂量范围内, SAA 的效 价更高,SAA 对内皮细胞保护和促进血管生成的作 用可能更强。依达拉奉对 VEGFA 和 VEGFR2 蛋白 表达也有一定促进作用,但对 HIF-1α蛋白表达及 PI3K/Akt/mTOR 信号通路蛋白磷酸化程度无明显 作用,说明依达拉奉可能通过其他机制促进 VEGFA 的表达,并引起 VEGFR2 下游其他信号通路的改 变。依达拉奉和 SAA 之间的差异可能与依达拉奉 对自由基的显著清除作用有关^[30-31]。

综上所述, SAA可改善缺氧诱导的 HBMEC 损伤, 改善 HBMEC 增殖和迁移能力, 进而促进管腔形成, 发挥内皮细胞保护和促进血管生成的作用, 其机制可能涉及 HIF-1α/VEGFA/VEGFR2 及其下游信号通路 PI3K/Akt/mTOR 的激活。

参考文献:

- Kuriakose D, Xiao Z. Pathophysiology and treatment of stroke: present status and future perspectives[J/OL]. *Int J Mol Sci*, 2020, 21(20): 7609 [2021-09-10]. https://www.ncbi.nlm.nih.gov/pmc/articles/ PMC7589849/. DOI: 10.3390/ijms21207609.
- [2] Loi M, Zaliani A, Abbamonte M, et al. Milestones and timescale of poststroke recovery: a cohort study[J/OL]. Behav Neurol, 2020, 8216758 [2021-09-10]. https://pubmed.ncbi.nlm.nih.gov/33282006/. DOI: 10.1155/2020/8216758.
- [3] Aghazadeh Y, Khan ST, Nkennor B, et al. Cellbased therapies for vascular regeneration: past, present and future[J / OL]. *Pharmacol Ther*, 2021, 107976 [2021-09-10]. https://pubmed.ncbi.nlm.nih. gov/34480961/. DOI: 10.1016/j.pharmthera.2021.107976.
- [4] Plate KH. Mechanisms of angiogenesis in the brain[J]. J Neuropathol Exp Neurol, 1999, 58(4): 313-320.
- [5] Sun P, Zhang K, Hassan SH, et al. Endothelium targeted deletion of microRNA-15a/16-1 promotes poststroke angiogenesis and improves long-term

neurological recovery[J]. *Circ Res*, 2020, 126(8):1040-1057.

- [6] Kanazawa M, Takahashi T, Ishikawa M, *et al.* Angiogenesis in the ischemic core: a potential treatment target?
 [J]. *J Cereb Blood Flow Metab*, 2019, 39(5):753-769.
- [7] Carmeliet P. Angiogenesis in life, disease and medicine[J]. *Nature*, 2005, 438(7070): 932-936.
- [8] Greenberg DA, Jin K. From angiogenesis to neuropathology[J]. *Nature*, 2005, 438(7070): 954-959.
- [9] Gregorius J, Wang C, Stambouli O, *et al.* Small extracellular vesicles obtained from hypoxic mesenchymal stromal cells have unique characteristics that promote cerebral angiogenesis, brain remodeling and neurological recovery after focal cerebral ischemia in mice [J/OL]. *Basic Res Cardiol*, 2021, 116(1): 40 [2021-09-10]. https://www.ncbi.nlm.nih.gov/pmc/articles/ PMC8187185/. DOI: 10.1007/s00395-021-00881-9.
- [10] Hatakeyama M, Ninomiya I, Kanazawa M. Angiogenesis and neuronal remodeling after ischemic stroke[J]. *Neural Regen Res*, 2020, 15(1): 16-19.
- [11] Krupinski J, Kaluza J, Kumar P, et al. Role of angiogenesis in patients with cerebral ischemic stroke[J]. Stroke, 1994, 25(9): 1794-1798.
- [12] Yu SW, Friedman B, Cheng Q, et al. Stroke-evoked angiogenesis results in a transient population of microvessels[J]. J Cereb Blood Flow Metab, 2007, 27(4): 755-763.
- [13] Wang ML, Zhang LX, Wei JJ, et al. Granulocyte colonystimulating factor and stromal cell-derived factor-1 combination therapy: a more effective treatment for cerebral ischemic stroke[J]. Int J Stroke, 2020, 15(7): 743-754.
- [14] 张雯, 宋俊科, 闫蓉, 等. 丹酚酸 A 通过 Nrf2/HO-1 途 径减轻大鼠脑缺血再灌注损伤[J]. 药学学报(Acta Pharmaceutica Sinica), 2016, 51(11): 1717-1723.
- [15] Qian W, Wang Z, Xu T, et al. Anti-apoptotic effects and mechanisms of salvianolic acid A on cardiomyocytes in ischemia-reperfusion injury[J]. Histol Histopathol, 2019, 34(3): 223-231.
- [16] Song J, Zhang W, Wang J, et al. Inhibition of FOXO3a/BIM signaling pathway contributes to the protective effect of salvianolic acid A against cerebral ischemia/reperfusion injury[J]. Acta Pharm Sin B, 2019, 9(3): 505-515.
- [17] Zhao J, Li L, Fang G. Salvianolic acid A attenuates cerebral ischemia / reperfusion injury induced rat brain damage, inflammation and apoptosis by regulating miR-499a/DDK1[J]. *Am J Transl Res*, 2020, 12(7): 3288-3301.
- [18] Zhang W, Song JK, Zhang X, et al. Salvianolic acid A attenuates ischemia reperfusion induced rat brain

damage by protecting the blood brain barrier through MMP-9 inhibition and anti-inflammation[J]. *Chin J Nat Med*, 2018, 16(3): 184-193.

- [19] Chien MY, Chuang CH, Chern CM, et al. Salvianolic acid A alleviates ischemic brain injury through the inhibition of inflammation and apoptosis and the promotion of neurogenesis in mice[J]. Free Radical Biol Med, 2016, 99: 508-519.
- [20] Liu CD, Liu NN, Zhang S, *et al.* Salvianolic acid A prevented cerebrovascular endothelial injury caused by acute ischemic stroke through inhibiting the Src signaling pathway[J]. *Acta Pharma Sin B*, 2021, 42 (3): 370-381.
- [21] Mahmood Q, Wang GF, Wu G, et al. Salvianolic acid A inhibits calpain activation and eNOS uncoupling during focal cerebral ischemia in mice[J]. *Phytomedicine*, 2017, 25: 8-14.
- [22] Lee H, Kang KT. Advanced tube formation assay using human endothelial colony forming cells for evaluation of angiogenesis[J]. *Korean J Physiol Pharmacol*, 2018, 22(6): 705-712.
- [23] Wiedemann E, Jellinghaus S, Ende G, *et al.* Regulation of endothelial migration and proliferation by ephrin-A1[J]. *Cell Signal*, 2017, 29: 84-95.
- [24] Jung JE, Lee HG, Cho IH, et al. STAT3 is a potential modulator of HIF-1-mediated VEGF expression in human renal carcinoma cells[J]. FASEB J, 2005, 19(10): 1296-1298.
- [25] Liu Y, Ran H, Xiao Y, *et al.* Knockdown of HIF-1α impairs post-ischemic vascular reconstruction in the brain via deficient homing and sprouting bmEPCs[J]. *Brain Pathol* (Zurich, Switzerland), 2018, 28: 860-874.
- [26] Chen B, Zhang Y, Chen S, et al. The role of vascular endothelial growth factor in ischemic stroke[J]. *Pharmazie*, 2021, 76(4): 127-131.
- [27] Wang X, Bove AM, Simone G, et al. Molecular bases of VEGFR-2-mediated physiological function and pathological role[J/OL]. Front Cell Dev Biol, 2020, 8: 599281 [2021-09-10]. https://pubmed.ncbi.nlm.nih. gov/33304904/. DOI:10.3389/fcell.2020.599281.
- [28] Mi DH, Fang HJ, Zheng GH, et al. DPP-4 inhibitors promote proliferation and migration of rat brain microvascular endothelial cells under hypoxic/high-glucose conditions, potentially through the SIRT1/HIF-1/VEGF pathway[J]. CNS Neurosci Ther, 2019, 25(3): 323-332.
- [29] 龙亮,何劲松,雷勇前,等.基于血管新生与神经发生探 讨依达拉奉对缺血性脑卒中大鼠的作用与机制[J]. 卒中与神经疾病(Stroke and Nervous Diseases), 2021, 28(3): 300-305.
- [30] Kikuta M, Shiba T, Yoneyama M, et al. In vivo and

in vitro treatment with edaravone promotes proliferation of neural progenitor cells generated following neuronal loss in the mouse dentate gyrus[J]. *Pharmacol Sci*, 2013, 121(1): 74-83. [31] He L, He T, Farrar S, et al. Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species[J]. *Cell Physiol Biochem*, 2017, 44 (2): 532-553.

Protective effect of salvianolic acid A on angiogenesis of human brain microvascular endothelial cells injured by oxygen glucose deprivation and mechanisms

ZHANG Sen¹, LIU Cheng-di¹, KONG De-wen¹, JIANG Nan^{1,2}, KONG Ling-lei¹, DU Guan-hua¹ (1. Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; 2. School of Pharmacy, Henan University, Kaifeng 475004, China)

Abstract: OBJECTIVE To investigate the effects of salvianolic acid A (SAA) on angiogenesis in vitro and the underlying mechanisms. METHODS A hypoxic-injury model for oxygen-glucose deprivation (OGD)-induced human brain microvascular endothelial cells (HBMECs) was used to investigate the effects of SAA on angiogenesis. CCK-8 assay was used to detect the cell viability at 0, 2, 4, 6, 8 and 10 h after OGD to determine the OGD time. HBMECs were randomly divided into six groups: cell control, OGD, OGD+SAA 0.3, 1.0, 3.0 µmol·L⁻¹, and OGD+edaravone 10 µmol·L⁻¹ groups. After 6 h of OGD, cell viability was determined by CCK-8 assay. Matrigel tube formation assay was conducted to observe the formation of lumina 2-10 h after OGD. The numbers of nodes, meshes, branches and the lumen length were detected at 6 h. EdU incorporation assay was used to evaluate the cell proliferation ratio while cell scratch assay was used to detect the migration distance 6 h after OGD. HBMECs were divided into cell control, OGD, OGD+SAA 3.0 μ mol·L⁻¹ and OGD+edaravone 10 μ mol·L⁻¹ groups. The expressions of hypoxia inducible factor-1 α (HIF-1 α), vascular endothelial growth factor-A (VEGFA) and VEGF receptor-2 (VEGFR2), and protein phosphorylation levels of phosphatidylinositol-3-kinase (PI3K), protein kinase B (Akt) and mammalian target of Rapamycin (mTOR) protein were determined by Western blotting 6 h after OGD. **RESULTS** The cell viability was $(56\pm6)\%$ 6 h after OGD, which was determined as the time of subsequent experiments. Compared with the cell control group, OGD resulted in a significant decrease in cell viability (P<0.01). SAA (3.0 µmol·L⁻¹) and edaravone (10 µmol·L⁻¹) reversed OGD-induced cell injury and increased cell viability. In addition, SAA (3.0 µmol·L⁻¹) could significantly increase the numbers of nodes, meshes, branches, the lumen length in tube formation (P < 0.05, P<0.01), the ratio of EdU-positive cells (P<0.01) and the migration distance (P<0.05), which were all reduced in the OGD group (P<0.05, P<0.01). Furthermore, SAA (3.0 µmol·L⁻¹) up-regulated the expression levels of HIF-1- α , VEGFA, VEGFR2, and the phosphorylation levels of PI3K, Akt and mTOR (P< 0.05, P<0.01). CONCLUSION SAA can protect HBMECs against OGD injury and promote angiogenesis by activating HIF-1α/VEGFA/VEGFR2 and its downstream signaling pathway PI3K/Akt/mTOR.

Key words: salvianolic acid A; brain microvascular endothelial cells; angiogenesis; hypoxia inducible factor-1α; vascular endothelial growth factor-A

Corresponding author: KONG Ling-lei, E-mail: konglinglei@imm.ac.cn; DU Guan-hua, E-mail: dugh@imm.ac.cn

Foundation item: National Natural Science Foundation of China (82004071); Beijing Municipal Natural Science Foundation (7182113); and National Scientific and Technologiy Major Project of China (2018ZX09711001-009-009)

⁽收稿日期: 2021-09-18 接受日期: 2021-11-01)