巨噬细胞膜仿生纳米递药系统在疾病靶向治疗中的应用4

李婵莲^{1*},宋佳敏¹,陈美玲²,任晓亮²,王 萌^{1#}(1.天津中医药大学组分中药国家重点实验室,天津 301617;2. 天津中医药大学中药学院,天津 301617)

中图分类号 R943 文献标志码 A 文章编号 1001-0408(2022)18-2290-05

DOI 10.6039/j.issn.1001-0408.2022.18.23

摘 要 近年来,基于细胞膜包裹纳米粒的仿生纳米递药系统发展迅速,在多种疾病中表现出比传统纳米递药系统更高的生物相容性及疗效。巨噬细胞作为免疫系统的成员,与多种疾病的发生、发展息息相关。巨噬细胞源自单核细胞,受到相应刺激后,可极化为M1型和M2型:M1型巨噬细胞参与促炎反应,M2型巨噬细胞参与抗炎反应。本文综述了近年来巨噬细胞膜包裹纳米粒的仿生纳米制剂在疾病靶向治疗中的应用现状,结果显示,巨噬细胞膜包裹纳米粒的仿生纳米制剂在恶性肿瘤(乳腺癌、结直肠癌、黑色素瘤、脑胶质瘤)、阿尔茨海默病、肝脏缺血再灌注损伤、动脉粥样硬化等治疗中都显现出了高靶向性和低免疫原性,但目前集中于抗肿瘤研究,且都处于实验室研究阶段。

关键词 巨噬细胞;细胞膜包裹纳米粒;膜仿生纳米递药系统;靶向治疗

Application of biomimetic nano drug delivery system of macrophage membrane in disease targeted therapy

LI Chanlian¹, SONG Jiamin¹, CHEN Meiling², REN Xiaoliang², WANG Meng¹(1. State Key of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; 2. School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China)

ABSTRACT In recent years, biomimetic nanodelivery system based on cell membrane coating has developed rapidly and shows better biocompatibility and efficacy than traditional nanodelivery systems in a variety of diseases. Macrophages, as members of the immune system, are closely related to the occurrence and development of a variety of diseases. Macrophages are derived from monocytes and can be polarized into M1 and M2 types after corresponding stimulation: M1 macrophages involved in the proinflammatory reaction and M2 macrophages involved in the inflammatory reaction. This paper reviews the application status of biomimetic nanoparticles coated with macrophage membrane in disease targeted therapy in recent years. Biomimetic nanoparticles coated with macrophage membrane has shown its high targeting and low immunogenicity in the treatment of malignant tumors (breast cancer, colorectal cancer, melanoma, glioma), Alzheimer's disease, liver ischemia-reperfusion injury, atherosclerosis and so on. However, the research of Biomimetic nanoparticles coated with macrophage membrane currently focuses on anti-tumor research and is still in the laboratory research stage.

KEYWORDS macrophage; nanoparticles coated with cell membrane; biomimetic delivery system; targeted therapy

近年来,基于纳米材料的药物递送在各种疾病的治疗中发挥着重要作用^[1]。纳米材料虽能改善药物的一些理化性质,如实现缓控释效应、提高疏水性药物的溶解度等,但易被机体识别为"非己"物质导致被网状内皮系统识别及清除,从而减弱药物疗效;此外,部分纳米材料还存在一定的毒性。为解决这些问题,膜仿生递药系统应运而生,其中细胞膜包裹纳米粒就是一种新兴的纳米

Δ基金项目 国家自然科学基金面上项目(No.81873191)

载药策略。仿生纳米递药系统在细胞膜的修饰下,继承了纳米粒的优点以及天然生物膜表面的受体,可有效避免被免疫系统识别及清除,从而延长药物的体内循环时间,并在特定细胞膜的作用下实现纳米药物的主动靶向。目前,常用的细胞载体有红细胞、肿瘤细胞、巨噬细胞等。其中,巨噬细胞作为天然免疫系统第一道防线,在生理环境下可识别及清除坏死或凋亡的细胞碎片、病原体、呈递抗原,参与适应性免疫和免疫监视^[2]。此外,巨噬细胞广泛分布于人体,能自由穿梭于各个组织,可跨越几乎不渗透的生物屏障到达体内许多普通药物无法到达的区域^[3]。因此,用巨噬细胞膜包裹纳米粒(macrophage membrane-nano particles, MM-NPs)制备的仿生

 $[\]star$ 第一作者 硕士研究生。研究方向:纳米制剂的制备与研究。E-mail:chanlian108@163.com

[#]通信作者 研究员,博士生导师,博士。研究方向:中药生物药剂学和中药制剂稳定性。E-mail:mengwangr@163.com

纳米制剂可以克服传统纳米制剂靶向性差、免疫原性高等缺点。本文综述了近年来巨噬细胞膜仿生纳米递药系统在疾病靶向治疗中的应用现状,以期为该递药系统的深入研究和开发提供参考。

1 巨噬细胞的来源与类型

巨噬细胞是造血系统中最具可塑性且功能多样的固有免疫细胞,源自单核细胞。单核细胞来源于骨髓中的造血干细胞。单核细胞通过血液迁移到全身各组织及器官中发育成巨噬细胞^[2]。炎症期间,离开血流的一类巨噬细胞被运送至炎症部位,它们可自由穿梭于组织间隙成为游离巨噬细胞;另一类定居于组织器官中的巨噬细胞,它们一般不再返回血液,而是参与组织修复、免疫监视,被称为组织定居巨噬细胞,如肝脏中的肝巨噬细胞、皮肤中的朗格汉斯细胞等。这些组织定居巨噬细胞在组织重塑和维持体内平衡中起着关键作用。

巨噬细胞具有较强的可塑性和异质性,受到相应的刺激后,可极化为经典活化的M1型和交替激活的M2型以维持细胞稳态。M1型巨噬细胞参与促炎反应并释放干扰素γ、白细胞介素 1β(interleukin 1β,IL-1β)、肿瘤坏死因子α(tumor necrosis factor α, TNF-α)等促炎细胞因子,以帮助宿主抵御病原体,常在炎症反应和肿瘤的早期阶段出现¹⁴。M2型巨噬细胞参与抗炎反应,可分泌IL-4、IL-10、IL-13等抗炎细胞因子,以促进炎症消退、组织修复和伤口愈合,常在伤口愈合的早期阶段和肿瘤的晚期阶段出现¹⁶。目前主要用M1型巨噬细胞作为药物载体,以加强炎症反应。但某些疾病的治疗也需要抑制免疫反应,如用于骨组织修复的纳米材料,发挥抗炎作用的M2型巨噬细胞是其理想的药物载体。

2 MM-NPs 在疾病靶向治疗中的应用

2.1 恶性肿瘤

肿瘤生长需要较多营养物质的流入与代谢物的排出,当周围的环境无法满足其生长需求时,肿瘤会向周围组织浸润,形成新生血管。但大部分新生血管不完整,无法正常运输氧气,导致形成缺氧、间质液体张力高、pH低的肿瘤微环境⁶⁻⁷¹。肿瘤组织分泌的趋化因子以及肿瘤内部缺氧坏死导致组织释放大量的炎症因子都会招募体内的巨噬细胞向肿瘤富集。因此,巨噬细胞是肿瘤微环境中最丰富的细胞,占实体瘤的50%以上¹⁸¹。研究发现,巨噬细胞参与肿瘤的生长与转移,并能影响肿瘤微环境,基于此,MM-NPs可实现高肿瘤靶向性、低免疫原性,其靶向肿瘤组织过程的示意图见图1¹³¹。

2.1.1 乳腺癌 乳腺癌是全球女性癌症死亡的主要原因之一。乳腺癌的转移是导致患者死亡的主要原因,主要包括肺转移与骨转移[®]。多药耐药现象降低了肿瘤部位药物浓度,而受体介导的主动靶向与肿瘤的高渗透、长滞留效应相结合,使药物最大程度地富集于肿瘤部位。研究发现,巨噬细胞膜上的整合素α₁和整合素β₁与

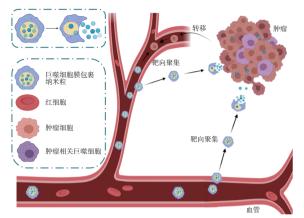


图 1 MM-NPs 靶向肿瘤组织过程的示意图

乳腺癌细胞上血管细胞黏附分子1相互作用,可提高巨 噬细胞与癌细胞之间的亲和性,显著抑制乳腺癌的肺转 移[10]。乳腺肿瘤分泌的趋化因子2与巨噬细胞膜上的表 面趋化因子受体2结合,可促进MM-NPs向肿瘤部位聚 集,增强药物在肿瘤部位富集[11]。Xuan等[12]发现巨噬细 胞膜包裹金纳米颗粒可在乳腺癌荷瘤小鼠体内实现长 循环,显著增强抗乳腺癌效果。Poudel等[13]发现巨噬细 胞膜包裹硫化铜纳米粒通过光疗与化疗联合作用可改 善肿瘤的深层侵袭,增强抗乳腺癌效果。Rao等[4]使用 巨噬细胞膜包载新型荧光探针,利用巨噬细胞膜靶向肿 瘤能力,将荧光探针成功递送至肿瘤部位,可有效实现 肿瘤体内成像。综上,MM-NPs不仅可凭借巨噬细胞膜 使纳米药物主动靶向乳腺癌的肺转移部位,延长纳米药 物在体内的循环时间,增加乳腺癌部位的药物浓度,还 可凭借纳米粒优异的化学和光学性能实现对癌症部位 的光热治疗和高效的体内肿瘤成像。

2.1.2 结直肠癌 结直肠癌是我国最常见的癌症之一,其发病率也呈现明显上升的趋势。据报道,结直肠癌的发生发展与肿瘤免疫逃逸密切相关,因而免疫治疗被认为在结直肠癌的治疗中有很大潜力[15]。王鹏[16]用巨噬细胞膜包裹 10-羟基喜树碱的聚乳酸-共聚乙酸[poly (lactide-glycolide acid),PLGA]纳米粒,发现巨噬细胞膜能显著增强结肠癌细胞对纳米粒的摄取,同时减少巨噬细胞对仿生纳米制剂的摄取,表明该仿生纳米制剂对结肠癌细胞的靶向能力与免疫逃逸能力良好。Wang等[17]发现巨噬细胞-癌细胞融合膜包裹纳米制剂具有优越的免疫逃逸和同源黏附能力,表现出体内长期滞留以及靶向积累,可显著抑制结直肠癌细胞的生长,延长结直肠癌模型小鼠的生存时间。综上,MM-NPs有望用于结直肠癌的免疫治疗。

2.1.3 黑色素瘤 黑色素瘤是一种由黑色素细胞恶性转化而形成的肿瘤,其患者病死率较高。恶性黑色素瘤的转移率较高,现有的治疗方法难以达到痊愈。黑色素瘤中的巨噬细胞含量为0~30%,在皮肤黑色素瘤、鼻窦黑色素瘤的原发病变部位中均发现有巨噬细胞^[18]。人

类恶性黑色素瘤早期会表达巨噬细胞趋化蛋白1,该蛋白高表达会促进大量单核巨噬细胞聚集和肿瘤被破坏^[19]。Cao等^[20]构建了巨噬细胞膜包裹紫杉醇白蛋白纳米粒,发现巨噬细胞膜可显著提高纳米粒对肿瘤细胞的摄取效率,且不改变其主要的内化途径;还可延长纳米粒在B16F10荷瘤小鼠肿瘤部位的滞留时间,增加抗肿瘤效果。

2.1.4 脑胶质瘤 脑胶质瘤是一种非常致命的脑癌。 化疗是治疗脑胶质瘤最常规的治疗策略,但传统的化疗 药物无法达到有效治疗剂量。在脑胶质瘤发病早期,血 脑屏障完整,可保护脑组织免受血液循环中有毒物质的 侵害,也可阻止绝大部分药物进入脑组织发挥作用;而 在晚期,由于高渗透、长滞留效应,血脑屏障受到损害, 完整性降低,但肿瘤内间质液体压力和血脑肿瘤屏障的 增加仍然阻碍治疗药物进入肿瘤^[21]。因此,如何将药物 有效递送至肿瘤部位是治疗脑胶质瘤最主要的挑战之 一。在脑胶质瘤周围存在大量的巨噬细胞,巨噬细胞膜 上的整合素 α4与巨噬细胞分化抗原1有助于纳米药物穿 过血脑屏障靶向脑胶质瘤^[22]。Lai 等^[23]设计了巨噬细胞 包裹纳米粒,发现该纳米粒能穿过血脑屏障,选择性地 聚集于肿瘤部位,同时还能通过光热疗法杀死肿瘤细 胞,延长脑胶质瘤模型小鼠的生存时间。

2.2 阿尔茨海默病

阿尔茨海默病(Alzheimer's disease, AD)是一种神经系统性疾病,俗称老年痴呆症。AD患者在全球范围内不分年龄段地迅速增加,其主要特征是记忆力与思考能力的降低或丧失,目前还没有有效的治疗方法来延缓或阻止其发展^[24]。炎症是AD神经元损伤的重要原因,小胶质细胞通过激活补体级联反应产生 IL-1、IL-6、TNF-α等炎症因子,参与AD的免疫反应^[25]。线粒体改变是AD发展的驱动力,氧化代谢反应过程中所产生的活性氧可导致线粒体功能障碍,而AD的发展也会影响线粒体的功能,形成恶性循环^[26]。Han等^[27]制备的巨噬细胞膜包裹染料木黄固体脂质纳米粒成功继承了巨噬细胞膜包裹染料木黄固体脂质纳米粒成功继承了巨噬细胞的免疫特性,隐藏了纳米粒从而免其被网状内皮系统捕获;该仿生纳米制剂还能有效穿过血脑屏障靶向到神经元细胞,进一步定位于线粒体从而抑制其产生活性氧,进而保护神经元,抑制其凋亡。

2.3 肝脏缺血再灌注损伤

肝脏缺血再灌注损伤是肝切除和原位肝移植过程中常见的病理过程,已被证实是早期移植失败或慢性移植排斥反应以及肝衰竭的主要原因,目前暂无有效的治疗策略[28]。因此,缓解肝脏缺血再灌注损伤是提高肝移植患者生存率的治疗策略之一。肝脏缺血再灌注损伤是一个复杂的过程,涉及活性氧的释放、肝巨噬细胞的活化和炎症因子的分泌等多个因素[29]。Ou等[30]发现巨噬细胞膜包裹PLGA可中和脂多糖(lipopolysaccharide,

LPS),减少LPS与Toll样受体4的结合,通过下调Toll样受体4/髓样分化因子88/IL-1受体相关酶/核因子-κB信号通路、抑制炎症反应来避免肝脏缺血再灌注损伤的发生。

2.4 动脉粥样硬化

动脉粥样硬化(atherosclerosis, AS)是一种典型的慢 性炎症性血管病变,是脑血管病、冠心病和外周动脉疾 病等缺血性心脑血管病的共同病理学基础[31]。单核巨 噬细胞可通过表面趋化因子受体2感应趋化因子,靶向 AS 部位[32]。此外,巨噬细胞上的清道夫受体(CD36)可 与AS中的低密度脂蛋白结合,使得MM-NPs可以靶向 AS病灶部位并促进药物释放[33]。Gao等[33]发现巨噬细 胞膜包裹阿托伐他汀的活性氧纳米粒对巨噬细胞有免 疫逃逸功能,对LPS和氧化型低密度脂蛋白诱导的巨噬 细胞炎症以及泡沫细胞形成有抑制作用,能有效降低全 身性炎症,对小鼠AS有良好的治疗效果。王溢[3]发现 巨噬细胞膜包裹药物的PLGA具有药物缓释、长效血液 循环及高效 AS 靶向作用,同时可显著增强炎症内皮细 胞对纳米粒的摄取作用,促进药物在AS病变部位聚集, 从而有效抑制 AS 的发展。程立婷等[35]发现巨噬细胞膜 包裹PLGA 纳米粒可有效识别血管细胞黏附分子1受 体,实现AS靶向。

2.5 内毒素血症与脓毒症

内毒素血症是一种宿主对细菌内毒素反应失调引 起的病理生理反应,其免疫系统不受控制地被激活导致 全身炎症反应综合征[86]。脓毒症是一种宿主对感染反 应失调引起的可危及生命的多器官功能障碍,在临床上 具有高病死率[37]。内毒素血症与脓毒症都表现为血清 中LPS水平升高。在人体的循环系统中,LPS在巨噬细 胞膜表面CD14受体的辅助下与巨噬细胞表面Toll样受 体4结合,刺激巨噬细胞释放TNF-α、IL-6等炎症因子, 可导致一系列的炎症反应综合征[38]。Shen等[39]发现巨噬 细胞膜包裹纳米粒凭借巨噬细胞膜上特异性结合LPS 的受体,能够捕获、中和内毒素,减少炎症因子的释放, 并能有效释放药物,显著减弱内毒素血症模型小鼠的免 疫反应,提高小鼠的存活率。Thamphiwatana等[40]也发 现巨噬细胞包裹纳米颗粒具有与巨噬细胞相同的抗原 性外观,继承了与内毒素结合的能力,并且能降低促炎 细胞因子水平,抑制细菌的扩散,从而延长脓毒症模型 小鼠的生存时间。

2.6 糖尿病

糖尿病是以高血糖为特征的代谢疾病,主要分为1型和2型。1型糖尿病是B细胞破坏引起的,通常导致胰岛素绝对缺乏;2型糖尿病是由于胰岛素的分泌或作用逐渐丧失引起的,通常与胰岛素抵抗相关[41]。研究表明,巨噬细胞参与1型糖尿病及2型糖尿病的发生发展,已逐渐成为相关治疗的主要靶点[42]。巨噬细胞膜表面

特异性蛋白使 MM-NPs 可以靶向炎症部位,被证明可用于1型糖尿病的治疗。Zhang 等^[43]用巨噬细胞膜包裹羰基锰的介孔二氧化硅纳米药物递送系统治疗1型糖尿病,发现巨噬细胞膜可实现纳米药物长循环,促使其向炎症组织聚集,减轻炎症反应,抑制B细胞凋亡,降低糖尿病模型小鼠的血糖水平。2型糖尿病通常表现为高血糖水平和血脂异常,患者体内低密度脂蛋白不仅高于正常人群,且易被氧化成氧化型低密度脂蛋白。巨噬细胞上的CD36受体可与氧化型低密度脂蛋白结合,增强促炎细胞因子的产生^[44]。因此,巨噬细胞也有望成为治疗2型糖尿病的有效载体。但目前利用巨噬细胞膜包裹纳米粒治疗2型糖尿病的相关研究尚未见报道。

2.7 骨组织修复

机体进行骨组织修复过程包括促炎反应和抗炎反应。适当的促炎反应或抗炎反应对骨组织修复有积极作用,但过激的促炎反应或抗炎反应会破坏成骨细胞与细胞外基质的矿化。因此,控制促炎或抗炎细胞因子的平衡对于骨组织修复过程中的成骨作用至关重要。Yin等临发现巨噬细胞膜包裹D1分解素的金纳米胶囊能通过膜表面Toll样受体,可精确靶向到细菌并与促炎细胞因子结合从而显著抑制炎症反应,并通过近红外的照射促进M2型巨噬细胞极化,促进小鼠股骨缺损区的骨再生。此外,在许多临床疾病中,炎症是导致骨质流失的重要原因,而巨噬细胞作为炎症细胞,在骨骼形成与破坏中起着关键作用。因此,利用巨噬细胞开发仿生递药系统治疗骨关节疾病是一种有前景的骨再生策略。

3 结语

与传统非仿生纳米制剂相比,MM-NPs已被证明具有更低的免疫原性、更高的靶向性、更好的生物相容性,在恶性肿瘤(乳腺癌、结直肠癌、黑色素瘤等)、AD、肝脏缺血再灌注损伤、AS等治疗中都显现出独特的优势。但目前MM-NPs的研究大部分集中于抗肿瘤研究,其他相关疾病的研究相对较少;MM-NPs的研究只处于实验室研究阶段,且其在靶向部位的释放机制以及其临床疗效尚不可知,其载体的长期毒性也需要进一步研究。

参考文献

- [1] DANG Y, GUAN J J. Nanoparticle-based drug delivery systems for cancer therapy[J]. Smart Mater Med, 2020, 1: 10-19.
- [2] PATEL S K, JANJIC J M. Macrophage targeted theranostics as personalized nanomedicine strategies for inflammatory diseases[J]. Theranostics, 2015, 5(2):150-172.
- [3] QIY, YAN X, XIA T, et al. Use of macrophage as a Trojan horse for cancer nanotheranostics[J]. Mater Des, 2021, 198:109388.
- [4] GU Q L, YANG H L, SHI Q. Macrophages and bone in-flammation[J]. J Orthop Translat, 2017, 10:86-93.
- [5] CHEN Y N, HU M R, WANG L, et al. Macrophage M1/

- M2 polarization[J]. Eur J Pharmacol, 2020, 877: 173090.
- [6] COMBES F, MEYER E, SANDERS N N. Immune cells as tumor drug delivery vehicles[J]. J Control Release, 2020, 327;70-87.
- [7] 陈曦,祝星宇,马博乐,等.基于肿瘤微环境的纳米靶向载体研究进展[J].中国药房,2017,28(13):1864-1869.
- [8] 封贺,王建莉,路小超,等.肿瘤相关巨噬细胞的研究进展[J].生命科学,2019,31(3):217-224.
- [9] SHEN H, SUN C C, KANG L C, et al. Low-dose salinomycin inhibits breast cancer metastasis by repolarizing tumor hijacked macrophages toward the M1 phenotype[J]. Eur J Pharm Sci, 2021, 157:105629.
- [10] CAO H Q, DAN Z L, HE X Y, et al. Liposomes coated with isolated macrophage membrane can target lung metastasis of breast cancer[J]. ACS Nano, 2016, 10(8):7738-7748.
- [11] ZHAO H J, LI L, ZHANG J L, et al. C-C chemokine ligand 2 (CCL2) recruits macrophage-membrane-camouflaged hollow bismuth selenide nanoparticles to facilitate photothermal sensitivity and inhibit lung metastasis of breast cancer[J]. ACS Appl Mater Interfaces, 2018, 10 (37):31124-31135.
- [12] XUAN M J, SHAO J X, DAI L R, et al. Macrophage cell membrane camouflaged Au nanoshells for *in vivo* prolonged circulation life and enhanced cancer photothermal therapy[J]. ACS Appl Mater Interfaces, 2016, 8 (15): 9610-9618.
- [13] POUDEL K, BANSTOLA A, GAUTAM M, et al. Macrophage-membrane-camouflaged disintegrable and excretable nanoconstruct for deep tumor penetration[J]. ACS Appl Mater Interfaces, 2020, 12(51):56767-56781.
- [14] RAO L, HE Z B, MENG Q F, et al. Effective cancer targeting and imaging using macrophage membrane-camouflaged upconversion nanoparticles[J]. J Biomed Mater Res, 2017, 105(2):521-530.
- [15] YIN Y, LIU B X, CAO Y L, et al. Colorectal cancerderived small extracellular vesicles promote tumor immune evasion by upregulating PD-L1 expression in tumorassociated macrophages[J]. Adv Sci(Weinh), 2022, 9(9): 2102620.
- [16] 王鹏.巨噬细胞膜包裹载药PLGA纳米粒的制备及靶向 CT26细胞的实验研究[D].武汉:华中科技大学,2019.
- [17] WANG Z H, LIU J M, ZHAO N, et al. Cancer cell macrophage membrane camouflaged persistent luminescent nanoparticles for imaging-guided photothermal therapy of colorectal cancer[J]. ACS Appl Nano Mater, 2020, 3 (7): 7105-7118.
- [18] PIENIAZEK M, MATKOWSKI R, DONIZY P. Macrophages in skin melanoma: the key element in melanomagenesis[J]. Oncol Lett, 2018, 15(4):5399-5404.
- [19] WANG H F, ZHANG L J, YANG L H, et al. Targeting