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Abstract
Tedizolid is an oxazolidinone antibiotic with high potency against Gram-positive bacteria and currently prescribed in bacterial 
skin and skin-structure infections. The aim of the review was to summarize and critically review the key pharmacokinetic 
and pharmacodynamic aspects of tedizolid. Tedizolid displays linear pharmacokinetics with good tissue penetration. In 
in vitro susceptibility studies, tedizolid exhibits activity against the majority of Gram-positive bacteria (minimal inhibitory 
concentration [MIC] of ≤ 0.5 mg/L), is four-fold more potent than linezolid, and has the potential to treat pathogens being 
less susceptible to linezolid. Area under the unbound concentration–time curve (fAUC) related to MIC (fAUC/MIC) was best 
correlated with efficacy. In neutropenic mice, fAUC/MIC of ~ 50 and ~ 20 induced bacteriostasis in thigh and pulmonary 
infection models, respectively, at 24 h. The presence of granulocytes augmented its antibacterial effect. Hence, tedizolid 
is currently not recommended for immunocompromised patients. Clinical investigations with daily doses of 200 mg for 6 
days showed non-inferiority to twice-daily dosing of linezolid 600 mg for 10 days in patients with acute bacterial skin and 
skin-structure infections. In addition to its use in skin and skin-structure infections, the high pulmonary penetration makes 
it an attractive option for respiratory infections including Mycobacterium tuberculosis. Resistance against tedizolid is rare 
yet effective antimicrobial surveillance and defining pharmacokinetic/pharmacodynamic targets for resistance suppression 
are needed to guide dosing strategies to suppress resistance development.
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Key Points 

Tedizolid is a clinically useful antibiotic with activity 
against Gram-positive bacteria including methicillin-
resistant Staphylococci and vancomycin-resistant Entero-
cocci and currently recommended for patients with skin 
and skin-structure infections.

The pharmacokinetic (high bioavailability, once-daily 
dosing, and lack of dosing adjustment in special patient 
populations) and safety profile as well as high tissue 
penetration make it a potential candidate for pulmonary 
infections.

Further research is needed to optimize its existing usage, 
explore new therapeutic indications beyond skin and 
skin-structure infections, and to prevent resistance devel-
opment.

1 Introduction

With the increasing prevalence of methicillin-resistant 
Staphylococcus aureus (MRSA), and the emergence of van-
comycin (VAN) less susceptible isolates, the first-line ther-
apy options are shrinking to treat these serious infections [1]. 
Linezolid (LNZ), an oxazolidinone, was the first in this new 
class of antimicrobials to be effective against MRSA and less 
susceptible VAN isolates and widely used as an alternative 
to treat Gram-positive infection [2, 3]. However, twice-daily 
dosing, its hematological side effects (thrombocytopenia and 
myelosuppression), and the emergence of drug resistance, 
particularly the horizontally transferrable cfr-resistant genes, 
limit its clinical utility. Tedizolid (TDZ) [formerly called tor-
ezolid, TR-700, or DA-7157] is a new oxazolidinone antibi-
otic with a more favorable pharmacokinetic (PK) and safety 
profile compared with LZD. It also displayed enhanced 
antimicrobial activity mainly against Gram-positive bacte-
ria compared with LZD and is currently approved for use 
in skin and skin-structure infections. In this review, we aim 
to critically summarize and review the key preclinical and 
clinical PK and pharmacodynamic (PD) aspects of TDZ as 
well as identify further directions of research.
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2  Methods

A systematic literature search was conducted using terms 
“tedizolid,” “tedizolid phosphate,” “torezolid,” “TR 700,” 
and “DA-7157” with or without terms “pharmacokinetics” 
or “PK” and/or “pharmacodynamics” or “PD” or “resist-
ance” or “immune modulation” or “mycobacterium tuber-
culosis” or “TB” on PubMed and Web of Science. Original 
research articles were selected till August 2021.

3  Pharmacokinetics

The pharmacokinetics of TDZ was studied in both healthy 
subjects and patients. Because of poor water solubility, TDZ 
is administered as TDZ phosphate, which is rapidly hydro-
lyzed by plasma phosphatases into the free active moiety 
TDZ.

3.1  PK Profile in Healthy Subjects

With both oral or intravenous (IV) dosing, TDZ shows a 
volume of distribution of ~100 L and displays an elimination 
half-life of ~11 hours, approximately two-fold higher than 
LNZ, allowing for once-daily administration of TDZ in com-
parison to the twice-daily dosing of LNZ. Because of the 
high bioavailability (~91%), no dose adjustment is required 
while switching between both administration routes. At a 
dose range from 200 to 1200 mg/day, the area under the 
concentration–time curve from zero to infinity (AUC 0–∞) 
ranges from 21.6 to 123.1 mg∙h/L while the maximum 
concentration (Cmax) ranges from 1.8 to 9.5 mg/L. For the 
standard human dose of 200 mg/day, the Cmax and AUC 0–∞ 
are ~1.8–2.6 mg/L and ~21.6–32.7 mg∙h/L, respectively [4]. 
After multiple doses of IV 200 mg , at day 7, the area under 
the concentration–time curve from 0 to 24 hours (AUC 
0–24h was higher (29.2 mg∙h/L) compared with day 1 (22.3 
mg∙h/L) [5]. At 200 mg/day, the clearance (CL) values range 
from 5.9 to 6.5 L/h. The pharmacokinetics was found to be 
linear in the dose range of 100–600 mg/day [4–7]. Food had 
no effect on the area under the concentration–time curve 
from 0 to 72 h (AUC 0–72), but delayed Cmax by 26% [4]. 
Reported plasma protein binding ranges from 70 to 90% [8]. 
Tedizolid is predominantly excreted via the feces (~69%) as 
an inactive sulfate metabolite while ~10% is excreted via 
urine [9].

A two-compartment model with sigmoidal absorption and 
linear elimination was developed that successfully described 
the plasma disposition kinetics when applied to the pooled 
data from seven clinical studies (phase I–III) [10]. Neither a 
clinically important covariate nor ethnic differences affected 

the PK disposition significantly [11–14]. The PK character-
istics are shown in Table 1.

3.2  Pharmacokinetics in Special Patient 
Populations

3.2.1  Renal and Hepatic Impairment

Two single-dose (200 mg), phase I, parallel-group studies 
in patients with renal and hepatic impairment showed no 
appreciable difference in PK parameters when compared to 
the control groups. In subjects with severe renal impairment 
(estimated glomerular filtration rate <30 mL/min/1.73  m2), 
the mean AUC 0–72 (32.02 vs 29.69 mg∙h/L), Cmax (3.11 vs 
3.12 mg/L), CL (5.68 vs 6.13 L/h), and half-lives (12.25 vs 
12.85 hours) were indifferent to the respective control [15]. 
In patients undergoing intermittent hemodialysis, a minor 
impact on CL (< 10%) was reported [15, 16]. In in vitro 
models of continuous renal replacement therapy, transmem-
brane clearance of TDZ depended on hemodialysis type, 
ultrafiltrate rate, and blood flow rate. However, no need for 
dose adjustment in clinical settings was concluded [17]. 
However, substantial changes in protein binding, as they 
might occur in severe hepatic impairment or also in criti-
cally ill patients, might increase the CL of TDZ and warrants 
further investigation.

In patients with moderate and severe hepatic impair-
ment, the CL values were 6.06 and 5.22 L/h while the area 
under the concentration–time curve from 0 to 96 hours was 
29.89 and 34.80 mg∙h/L, which was 22% and 34% higher 
than the control group (22.80 and 24.37 mg∙h/L), respec-
tively. However, this increased exposure is likely clinically 
irrelevant and was well tolerated in other multiple-dose 
clinical studies and hence necessitates no dose adjustment 
[6, 15].

3.3  Elderly Individuals, Adolescents, and Children

Tedizolid depicted similar PK disposition kinetics after 
IV/oral administration of 200 mg/day in elderly indi-
viduals, adolescents, and adults. The AUC 0–24 values 
for adolescents (25.5 mg∙h/L) were within the range 
of the previously reported adult values (~30 mg∙h/L). 
Mean Cmax was similar after oral administration, but was 
43% higher than adults after an IV infusion (3.66 mg/L 
compared with ~2.5 mg/L), suggesting a 200-mg daily 
dose can be further studied in adolescents [18]. In chil-
dren aged 2–12 years, once-daily doses of 3–6 mg/kg 
provided a comparable exposure (AUC 0–∞: 17.2–29.6 
mg∙h/L) to that reported for adults and adolescents. 
However, in children (aged 2–6 years), the Cmax was 
higher than in adults (4.19 vs ~2.5 mg/L), which hints 
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to the splitting of doses as an alternative option [19]. 
The small sample size (n = 6) of the study indicates that 
further research might be needed to position TDZ for 
clinical use in children. Tedizolid displayed similar PK 
characteristics (200-mg single dose) in elderly subjects 
when compared to the adult population (AUC 0–72 of 34.7 
vs 29.9 mg∙h/L) and hence no dose adjustment seems 
necessary in this patient collective [20].

3.4  Obese Population

In obese patients, both IV and oral administration of the 
standard 200-mg daily dose, the AUC 0–∞, and Cmax geo-
metric mean ratios were 11–18% lower compared with 
healthy control subjects, indicating no significant difference 
between both populations [21, 22]. Similarly, no disparity in 
PK profiles was noted in morbidly obese patients compared 
to the nonobese subjects [23]. There were no significant 

Table 1  Pharmacokinetic parameters of tedizolid at a therapeutic dosage (200 mg/day)

AUC 0–∞ AUC from zero to infinity, AUC 0–24 AUC  from 0 to 24 hours, Cmax maximum concentration, IV intravenous, SD standard deviation from 
the mean, Vd volume of distribution
a AUC = area under the concentration–time curve
Data from [4, 5, 15, 18, 20, 21, 25, 28]

Population Author (year), 
study type

AUC a (mg∙ h/L) Clearance (L/h) Vd (L)a Cmax (mg/L)a Half-life (hours)

Healthy subjects Flanagan-I et al. 
(2014) [5], food 
effect and relative 
bioavailability

Single dose: 25.4 
± 4.6

6.08 ± 1.08 95.7 ± 23.5 2.0 ± 0.4 ~11 for all dose 
groups

Multiple doses: 
21.6 ± 6.5

7.48 ± 2.12 117 ± 21.9 1.8 ± 1.2

Healthy subjects Flanagan-II et al. 
(2014) [4], 
single IV dose or 
crossover IV and 
oral

Single dose (IV)a, 
32.6 ± 8.3

5.4 ± 1.8 67.1 ± 15.3 2.6 ± 0.6 11 ± 0.8

IV: 29 ± 6.1
Oral: 26.7 ± 6.0

IV: 5.9 ± 1.5
Oral: 6.5 ± 1.9

IV: 71.5 ± 12.7
Oral: 100.1 ± 17.7

IV: 2.5 ± 0.4
Oral: 1.9 ± 0.4

IV: 11.4 ± 2.0
Oral: 11.1 ± 2.1

Renal or hepati-
cally impaired 
subjects

Flanagan-III et al. 
(2014) [15], 
single dose, IV 
or oral

Renal (severe, pre-
dialysis infusion, 
post-dialysis): 
29.99 ± 8.97, 
23.15 ± 8.10, 
21.01 ± 4.71

– – 3.12 ± 0.85, 2.53 
± 0.95, 2.86 ± 
1.01

12.85 ± 2.28, 11.41 
± 1.78, 11.73 ± 
2.33

Hepatic (moderate, 
severe): 30.47 ± 
17.50, 35.23 ± 
21.13

– – 2.08 ± 0.74, 2.20 
± 0.80

14.94 ± 3.49, 14.19 
± 2.92

Adolescents Bradley et al. 
(2016) [18], IV 
infusion or oral 
dose

Oral: 25.2 ± 9.2 7.19 ± 2.12 83.5 ± 28.2 2.23 ± 0.5 8.26 ± 1.99
IV: 27.8 ± 7.3 6.31 ± 1.81 59.3± 12.2 3.85 ± 1.51 6.64 ± 0.69

Obese vs non-
obese subjects

Flanagan et al. 
(2017) [21]

Oral: (obese, non-
obese) 25.4, 28.5

– – – –

IV: (obese, non-
obese) 25.4, 28.7

– – – –

Elderly subjects Flanagan et al. 
(2018) [20], sin-
gle oral dose

Elderly: 34.7 ± 
10.6

5.2 ± 1.6 91.6 ± 28.2 2.6 ± 0.7 12.3 ± 1.3

Adults: 29.9 ± 5.9 5.7 ± 1.3 96.6 ± 21.0 2.4 ± 0.5 11.8 ± 1.0
Subjects with 

cystic fibrosis
Park et al. (2018) 

[25], IV infusion 
or oral dose

AUC 0–24: IV: 20.7 
± 3.92

9.72 88 2.92 ± 0.624 -

AUC 0–24: oral: 22.1 
± 5.72

2.22 ± 0.745 -

Subjects with 
diabetic foot 
infections

Stainton et al. 
(2018) [28], 
patients vs 
healthy volun-
teers, oral dose

Patients AUC 0–24: 
18.5 ± 9.7

15.0 ± 6.8 177.3 ± 53.7 1.5 ± 0.5 9.1 ± 3.6

Healthy adults 
AUC 0–24: 28.7 
± 9.6

11.4 ± 3.3 143.4 ± 50.4 2.7 ± 1.1 8.9 ± 2.2
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differences in PK profiles of patients after bariatric surgery 
compared to the adult population [24].

3.4.1  Cystic Fibrosis

The CL (mean total and distributional CLs of 9.72 and 4.13 
L/h, respectively) was higher in patients with cystic fibrosis 
compared with values reported earlier (6.69 and 0.959 L/h, 
respectively) for healthy volunteers and patients with com-
plicated skin and skin-structure infections (pooled data) in 
one study, but are almost similar to the CL values in patients 
with skin and skin-structure infections (8.28 and 2.95 L/h, 
respectively) [25]. Whether these changes in CL (in total or 
in parts) are due to PK alterations in cystic fibrosis or patho-
physiological changes during infection necessitates further 
investigations to guide an optimal dosing strategy in patients 
with cystic fibrosis.

3.4.2  Drug Interactions

Although TDZ shows in vitro a weak reversible inhibition 
of monoamine oxidases, provocative testing of a potential 
interaction between the therapeutic dose of TDZ and oral 
pseudoephedrine or tyramine in healthy volunteers in two 
randomized placebo-controlled trials exhibited no potential 
serotonergic or hypertensive adverse effects. The results were 
in line with the murine model studied with a similar objective 
[26]. Nonetheless, patients treated with TDZ and monoamine 
oxidases inhibitors should be carefully monitored for potential 
side effects.

3.4.3  Target Site Exposure

Tedizolid exhibits high tissue penetration into both skin and 
pulmonary tissues. When investigated in skin and adipose tis-
sue using microdialysis in healthy subjects after a single oral 
dose of 600 mg, the penetration ratio (measured as free area 
under the unbound concentration–time curve [fAUC]/mini-
mal inhibitory concentration [MIC]) fAUC tissue/fAUC plasma) 
for adipose and muscle tissue were 1.1 ± 0.2 and 1.2 ± 0.2, 
respectively [27], suggesting that unbound plasma represents 
a reasonable surrogate for tissue concentrations. Similarly, in 
another microdialysis study in patients with diabetic foot infec-
tion receiving 200 mg daily for 3 days, tissue concentrations 
approximated unbound plasma concentrations: the unbound 
tissue/unbound plasma concentration ratio was 1.1 (range 
0.3–1.6) for patients with diabetic foot infection and 0.8 (range 
0.7–1.0) for healthy volunteers, respectively [28]. At a daily 
dose of 200 mg orally for 3 days in healthy adults, in compari-
son to the fAUC 0–24 in plasma and assuming negligible protein 
binding in epithelial lining fluid (ELF), TDZ penetration ratios 
were approximately 40-fold higher in ELF and 20-fold higher 
in alveolar macrophages compared with plasma. The fAUC 

0–24 values for ELF and alveolar macrophages were 109.3 and 
52.95 mg∙h/L, respectively. This high pulmonary penetration 
advocates for the potential role of TDZ in the treatment of 
pulmonary infections [29]. Whether this increased penetra-
tion is due to active transport or any other mechanism is still 
unknown and needs further investigations. Moreover, TDZ 
shows good sputum penetration with a sputum-to-plasma ratio 
of 2.88 in patients with cystic fibrosis [30]. Tedizolid-induced 
suppression of mucin production in alveolar membranes could 
also contribute to the higher pulmonary penetration of TDZ 
[31]. Although varying degrees of unbound cerebrospinal 
fluid-to-unbound plasma penetration ratios are reported in the 
literature for humans and rats, further studies are needed to 
confirm these findings to define the potential role of TDZ to 
treat central nervous system infections [32, 33]. A summary of 
the tissue penetration of TDZ and LNZ is provided in Table 2.

4  Pharmacodynamics

4.1  Antimicrobial Spectrum

The antimicrobial spectrum of TDZ covers clinically rel-
evant Gram-positive bacteria including methicillin-sus-
ceptible Staphylococcus aureus (MSSA), MRSA, methi-
cillin-susceptible S. epidermidis, methicillin-resistant S. 
epidermidis, VAN-sensitive and VAN-resistant enterococci 
(VRE), penicillin-susceptible Streptococcus pneumoniae 
(PSSP) and penicillin-resistant S. pneumoniae (PRSP), and 
other frequently reported cutaneous and respiratory patho-
gens (Table 3) [2, 34]. Most Gram-positive bacteria men-
tioned above are susceptible to TDZ with MIC values of 
≤ 0.5 mg/L [35–39]. However, TDZ, compared with Gram-
positive bacteria, exhibits lower potencies against Gram-
negative bacteria such as Hemophilus influenzae (16 mg/L) 
and Moraxella catarrhalis (4 mg/L) [35, 40]. Like LNZ, 
TDZ binds to the ribosomal RNA 50S subunit and inhibits 
protein synthesis [2].

Staphylococcus aureus is a frequently reported pathogen 
in many skin, soft-tissue, and respiratory tract infections for 
which many commonly used antimicrobials gradually lost 
efficacy, resulting in an increasing number of MRSA, VAN-
resistant, and LNZ-resistant isolates [41, 42] and often limit-
ing the available treatment choices of antimicrobials in the 
underlying infections. Multiple comparative studies repeat-
edly demonstrated at least a four-fold higher potency of TDZ 
compared with LNZ. Moreover, TDZ shows efficacy against 
VAN-resistant, daptomycin (DAP)-resistant, and some LNZ-
resistant isolates and hence provides an alternative option 
to treat the less susceptible isolates of these antimicrobials 
[35, 37, 43–45]. Other studies with further Gram-positive 
isolates mentioned earlier have almost similar findings [11, 
34, 35, 38, 40, 43, 46–53]. However, few isolates that were 
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LNZ resistant (plasmid borne cfr multidrug resistance gene) 
showed a lower susceptibility (MIC > 0.5 mg/L) [54–59]. 
Hence, isolates above the MIC threshold of >0.5 mg/L are 
less likely to be successfully treatable with TDZ [10]. A 
susceptibility breakpoint of 0.5 mg/L is recommended by 
EUCAST for Staphylococcus species, Streptococci (A, B, C, 
G) and viridians (Streptococcus anginosus) [60]. The results 
from the Surveillance of Tedizolid Activity and Resistance 
Program (STAR program) in Europe showed that the major-
ity of the Enterococci exhibit MIC values of < 0.5 mg/L for 
TDZ and support the EUCAST breakpoint for Staphylococci 

[36, 61–64]. A recent PK/PD simulation-based analysis on 
existing PK and PD data from the literature reported a simi-
lar PK/PD breakpoint of 0.5 mg/L for the majority of Gram-
positive isolates [65]. However, no EUCAST susceptibility 
breakpoints are yet established for Enterococci [60].

With high penetration into human macrophages (TPH-
1), TDZ showed good intracellular efficacy against Listeria 
monocytogenes (MIC 0.125 mg/L) and S. aureus (MIC 
0.25–1 mg/L) in infected TPH-1 cells. The intracellular 
penetration can be potentially exploited to treat intracellular 
pathogens [66]. Its moderate activity against anaerobes par-
ticularly against Bacteroides fragilis  (MIC90 of 1 mg/L) can 
be exploited to treat mixed aerobic and anaerobic infection 
[67]. Tedizolid expresses good activity against several clini-
cally relevant respiratory pathogens such as PRSP  (MIC90 
of 0.25 mg/L) and PSSP  (MIC90 of 0.125–0.25 mg/L) and 
has a clinical potential to treat respiratory infections [12, 
35, 49, 68].

4.2  In Vitro Pre‑Clinical Studies

In vitro time-kill studies depict bacteriostatic activity 
for TDZ in most Gram-positive isolates. When studied 
against MRSA (MIC = 0.5 mg/L), methicillin-resistant S. 

Table 2  Tissue penetration (unbound tissue/unbound plasma) of tedi-
zolid (TDZ) vs linezolid (LNZ)

CNS central nervous system
a Total cerebrospinal fluid/total plasma

Tissue TDZ LNZ

Adipose 1.1 [27] 1.4 [138]
Muscle 1.2 [27] 1.3 [138]
Lungs 40 [29] ~ 1.0 [140]
CNS 0.5 [32] 0.6–1.6a [141, 142]
Bones – 1.09 [143]

Table 3  Summary of the 
pharmacodynamics of tedizolid

GIT gastrointestinal tract, HAP hospital-acquired pneumonia, IV intravenous, MIC90 Minimum inhibitory 
concentration against 90% of the isolates, MRSA methicillin-resistant S. aureus, MSSA methicillin-suscepti-
ble S. aureus, VAP ventilator-associated pneumonia, VRE vancomycin-resistant Enterococcus
a Above EUCAST susceptibility breakpoint for Staphylococcus species, Streptococci (A, B, C, G) and virid-
ians

Antimicrobial activity
Gram-positive [35, 36, 144–146]
Staphylococcus aureus (MRSA, MSSA), Staphylococcus epidermidis (including 

methicillin-resistant isolates)
MIC90: 0.25 mg/L

Enterococci:
Enterococcus faecium, Enterococcus faecalis including VRE
E. faecalis (linezolid non-susceptible)
Streptococcus pneumoniae (including penicillin-resistant isolates, β-hemolytic 

streptococci and viridians group)

MIC90: 0.25–0.5 mg/L
MIC90: 1.0a mg/L
MIC90: 0.25 mg/L

Anaerobes
(peptostreptococci sp., Clostridium difficile) MIC90: 0.25 mg/L
Gram-negative anaerobes
Bacteroides sp., Mycobacteria [129, 147]

MIC90: 1.0a mg/L

Mycobacterium abscessus sp. MIC90: 8.0a mg/L
Mycobacterium tuberculosis MIC90: 0.5 mg/L
Clinical summary
Approved indication [90, 91, 98, 99]
Acute bacterial skin and skin-structure infections
Potential applications
Bacterial pneumonia (HAP and VAP associated with MSSA and MRSA)
Adverse effects
GIT: nausea, vomiting, diarrhea, and dyspepsia
Myelosuppression: thrombocytopenia and anemia
Neurological: peripheral neuropathy
Others: headache

Dose: 200 mg/day for 
6 days (both oral and 
IV)
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epidermidis (MIC = 0.25 mg/L) and Enterococcus faecalis 
(MIC = 0.25 mg/L) a bacteriostatic effect was observed at 
both MIC and 16× MIC for all strains while a bactericidal 
activity (3 log-kill at 24 hours) at 16× MIC was observed 
for S. pneumoniae (MIC = 0.25 mg/L) [68]. In line with the 
above results, a bacteriostatic effect of TDZ was observed 
against VRE E. faecium (MIC 1 mg/L) and E. faecalis (0.25 
mg/L) after 24 hours at 2× MIC [69]. In another time kill 
study, TDZ exhibited bacteriostatic activity against MRSA 
and MSSA, while regrowth was observed with LNZ treat-
ment at the MIC and 2× MIC after 24 hours (LNZ MIC: 1 
and 2 mg/L for MRSA and MSSA, respectively) [70].

Tedizolid was also evaluated in combination. In a static 
time kill study using a concentration equal to 0.5× MIC of 
the respective isolate against MRSA (MIC, 0.25–0.5 mg/L) 
and S. epidermidis (MIC, 0.125–1 mg/L), TDZ showed 
synergistic (≥ 2  log10 CFU/mL reduction in combination 
vs most active single agent) activity with rifampicin and 
doxycycline, while, in contrast, an antagonistic (≥ 1  log10 
CFU/mL growth) activity of TDZ and moxifloxacin (MXF) 
was observed [71]. However, these findings were not uni-
form in all the strains (n = 10) and warrant further studies. 
Against S. aureus with reduced glycopeptide susceptibility, 
TDZ alone showed bacteriostatic activity, which was com-
parable to teicoplanin and rifampicin combination therapy 
in an in vitro static time kill study [48]. Daptomycin and 
TDZ while active alone against MRSA, in combination were 
inferior to the respective monotherapy in an in vitro dynamic 
model [72]. In an in vitro endocarditis model against VAN-
resistant S. aureus and VRE (E. faecium and E. faecalis), a 
step-down therapy (DAP for 3 days followed by TDZ for 2 
days) was as effective as DAP for 5 days [72]. However, no 
clinical study has yet explored these possible combination 
therapies.

Overall, TDZ exhibits reasonable bacteriostatic activity 
against Gram-positive pathogens frequently causative of sys-
temic, skin/cutaneous and respiratory infections, especially 
Staphylococci and Enterococci. However, studies demon-
strating the antibiotic effect of TDZ for more than 24 hours 
in static or dynamic in vitro models are limited. Insights 
from longer concentration–time studies are critical for better 
understanding its efficacy, dosing strategies, and the pat-
tern and extent of potential resistance development in a full 
course of therapy.

4.3  In Vivo Preclinical Studies

4.3.1  Murine Infection Models

Several in vivo studies were conducted in localized and 
systemic murine infection models to evaluate the phar-
macokinetics, pharmacodynamics, and the PK/PD param-
eters best corelated with efficacy of TDZ against a variety 

of Gram-positive pathogens. The pharmacodynamics of 
TDZ was evaluated by Louie et al., where a neutropenic 
thigh infection model with MRSA and MSSA infections 
was investigated. Tedizolid was equally effective against 
both MSSA and MRSA while the fAUC related to MIC 
(fAUC/MIC) was best correlated with efficacy. The fAUC/
MIC ratio related with stasis and 1-log kill relative to the 
starting inoculum was 49.3 and 105.9, respectively, at 24 
hours. A mean dose of 37.6 and 66.9 mg/kg of TDZ was 
required for stasis and 1 log CFU/g, respectively, at 24 h. 
In comparison, 150 mg/kg of LNZ failed to induce bac-
teriostasis, demonstrating the higher potency of TDZ as 
compared with LNZ and hence confirming the in vitro find-
ings in vivo [73].

When evaluated in a systemic infection model (immu-
nosuppressed [IS]) with MSSA and MRSA infection (MIC: 
0.125–0.5 mg/L), TDZ demonstrated a 2–9-fold higher 
activity than LNZ (MIC: 0.5–8 mg/L) with an  ED50 (dose 
giving half maximal effect) range of 1.5–3.2 to 4.3–7.6 mg/
kg vs 7.7–9.6 to 21.4–29.1 mg/kg of TDZ vs LNZ, respec-
tively [34]. Similarly, in a septicemia model induced by 
LNZ-resistant MRSA (cfr positive), a lower dose of TDZ 
(20 mg/kg) was superior in activity vs 50 mg/kg of LNZ 
(100 vs 80% survival). Other studies with Enterococci led 
to similar results [34, 74].

However, in erythromycin-resistant and clindamycin-
resistant Streptococci in a necrotizing infection murine 
model, TDZ and LNZ were equally effective [75]. Hence, 
the higher in vitro potency of TDZ as compared with LNZ 
seems to translate into the in vivo setting.

4.3.2  Role of Immune System Components

Drusano et al. proposed a critical role of granulocytes in 
immunocompetent (IC) compared with IS mice in a thigh 
infection model [76]. Despite similar PK profiles, the TDZ 
activity in IC mice was approximately 25-fold higher than 
in IS mice at all studied timepoints (24, 48, and 72 hours). 
A human equivalent dose of ≤ 200 mg/day vs 2300 mg/
day produced stasis (24 hours) in IC and IS mice, respec-
tively, whereas a maximal effect was observed at 200 mg/day 
in IC mice, suggesting that the efficacy of TDZ is grossly 
mediated by granulocytes. Based on previous results for IS 
mice, a fAUC/MIC target of 3 was calculated for IC mice 
for stasis at 24 h as compared with the target of 50 in IS 
mice [77]. However, when these findings were re-evaluated 
by Xiao et al. with a similar study design and exposure, 
contrary to the earlier findings, stasis was achieved in both 
IC and IS mice after 72 h of TDZ therapy [78]. Moreover, 
in IS mice, stasis was achieved at 72 h at a lower dose of 
166 mg/day compared with the previously reported value 
(~ 2000 mg/day) by Drusano et al. [78]. The reasons for this 
discrepancy are unclear. However, based on the findings of 
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Drusano et al., the current label of TDZ limits its use to IC 
patients [79]. The fAUC/MIC target of 8.9 for stasis at 72 h 
for MRSA (MIC 0.5 mg/L) in the IS model was close to the 
clinically reported value of 5–7 in adults [8, 73], and hence 
correlated well with the human studies [78]. The results also 
suggest the duration of therapy to be considered (efficacy 
at 72 h is higher than at 24 h) when comparing the results 
among murine models. In comparison, in IC mice, a lower 
target of fAUC/MIC <1.3 for stasis was reported for all stud-
ied timepoints [79].

Results in a pulmonary infection murine model, with 
human equivalent pulmonary exposures, with S. pneumo-
niae also showed a less pertinent role of granulocytes in 
TDZ efficacy [80]. In an IC thigh infection model, both 
TDZ and LNZ (at human equivalent doses) showed similar 
activity with S. aureus clinical isolate infections [81]. For 
Enterococci (E. faecalis and E. faecium), in a IC murine 
model TDZ, despite higher total activity of TDZ than LNZ 
in vitro, paradoxically, the effect of TDZ was inferior to 
LNZ in both bacterial killing and relapse prevention at 
human equivalent dosing [69]. A superior efficacy of LNZ 
over TDZ contradicts the earlier finding for which a plausi-
ble explanation is missing. Keel et al. investigated the role 
of both infection status and neutropenia and compared PK/
PD indices among IC, IS, and noninfected mice at a human 
equivalent dose of 8.4 mg/kg of TDZ. The fAUC (0–24) was 
41% higher in IC and 17% lower in noninfected mice than 
IS mice. The penetration ratio (bronchoalveolar lavage to 
blood) was higher for TDZ in infected mice (9.34 and 10.63 
for IC and IS) compared with 6.14 in noninfected mice and 
demonstrates a critical role of infectious status in tissue 
penetration [82]. A significant decrease of all cytokines 
(tumor necrosis factor-α, interleukin-1, interleukin-6, and 
macrophage inflammatory protein-2) was observed at 2 h 
after the TDZ human equivalent dose as compared with the 
control in a MRSA-induced pulmonary infection model. 
Whether this effect was indirectly related to the microbial 
toxins released by pathogens or induced by TDZ directly 
remains unclear [83].

An intact immune system is assumed to provide a 
2–4 log reduction in AUC/MIC target values [84]; how-
ever, the higher granulocyte-mediated effect restricts 
the clinical utility of TDZ only to IC patients as rec-
ommended by the European Medicines Agency [8]. 
However, the contrasting role of the immune system 
in some subsequent studies necessitates further inves-
tigations to substantiate these findings and define the 
role of the immune system in relation to TDZ efficacy 
further. Moreover, PK/PD studies, ideally, covering 
the full course of therapy, are needed to extend TDZ 
application in critically ill neutropenic patients where 
other therapeutic alternatives fail to treat the underly-
ing infection.

4.3.3  Pulmonary Infection Model

While soft-tissue infections are the main therapeutic area 
for which TDZ is indicated, pulmonary infections represent 
another major therapeutic area that is frequently investigated 
and has shown promising potential of clinical application. 
Choi et al. studied TDZ and LNZ against four PRSP and 
PSSP in a murine pneumonia model with human equiva-
lent doses. Tedizolid was at least two-fold more potent than 
LNZ in both PRSP and PSSP systemic infection models, 
while a lower dose (10 mg/kg/day of TDZ) resulted in a 
similar outcome (100% survival) as compared to 40 mg/kg/
day of LNZ in a PSSP model [85]. In a murine pneumonia 
model using MRSA and MSSA isolates, the fAUC/MIC tar-
get related to stasis for both TDZ and LNZ was 19 and 20, 
respectively, while roughly doubled values (34.6 and 46.1, 
respectively) were associated with 1-log kill reduction across 
all strains. These fAUC/MIC targets were 2–4-fold lower 
than the reported values for TDZ and LNZ derived from the 
thigh infection model [73, 86]. This discrepancy might be 
explainable by the enrichment of TDZ in ELF [87]. When 
compared with VAN and LNZ at equivalent human ELF 
exposure against an IC MRSA pneumonia mouse model, 
TDZ demonstrated similar efficacy to LNZ but was superior 
to VAN (100% vs 39% survival) [88, 89]. A similar study 
supports these findings [83]. In another study, interestingly, 
pulmonary exposure was almost similar in both IC and IS 
S. pneumoniae-induced pulmonary mice models (~110 
mg·h/L) despite unequal dosing (40 mg/kg/day vs 55 mg/
kg/day) [80] and further underlines the importance of con-
sideration of target-site drug concentrations when relating 
systemic exposure to efficacy. These exposures were compa-
rable to humans ELF exposure of 109.30 mg·h/L (200 mg/
day), confirming a good correlation of pre-clinical to clinical 
data. In IS mice, the fAUC 0–24/MICs associated with stasis 
and 1-log reduction in pulmonary bacterial burden relative 
to initial inoculum were 19.21 and 48.29, respectively, which 
was in line with the findings of Lepak et al. [87]. In total, 
the above studies highlight good pulmonary penetration and 
efficacy of TDZ in all studied isolates and provide a rationale 
to further explore TDZ for treating pulmonary infections.

4.4  In Vivo Clinical Studies

The exposure–response relationship of TDZ was investigated 
in several single and pooled clinical studies. In patients with 
complicated skin and skin-structure infections (main patho-
gen MRSA,  MIC90: 0.25 mg/L), Prokocimer et al. reported 
a dose of 200 mg/day to be as effective as higher doses when 
administered for 5–6 days. However, an exposure–response 
relationship was difficult to establish [6]. In the ESTAB-
LISH 1 and 2 clinical trials, 200 mg/day of TDZ was non-
inferior to 600 mg twice-daily dosing of LNZ in patients 
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with ABSSSIs and was subsequently licensed for this indica-
tion [90, 91]. Moreover, TDZ reduced skin and soft-tissue 
infection-related hospital admissions in out-patient settings 
[92]. Based on pooled PK and PD data from four clinical 
studies (one phase I, one phase II, and two phase III) where 
doses of 100–400 mg/day were investigated [10, 15, 91, 91, 
93, 94], a PK/PD model was developed to relate exposure to 
efficacy. At a dose of 200 mg/day, the PK/PD index fAUC/
MIC of 3 was defined to relate to clinical outcomes [77]. 
The developed PK/PD model relating fAUC to MIC was 
used in a Monte Carlo simulation to predict a therapeutic 
breakpoint. The fAUC/MIC target of 3 results in a prob-
ability of target attainment of ~98% at an MIC value of 0.5 
mg/L, while for 1 mg/L the probability of target attainment 
was ~70% and thus deemed not sufficiently high. Therefore, 
an MIC of 0.5 mg/L was declared the susceptibility break-
point for TDZ against S. aureus (MSSA or MRSA) and can 
be applied to other common bacterial pathogens having a 
TDZ MIC of ≤0.5 mg/L [10]. This clinical breakpoint was in 
line with preclinical studies where at a cut-off value of ≤0.5 
mg/L, most Gram-positive isolates were sensitive [95]. In 
addition to clinical studies in skin and skin-structure infec-
tions, in the first phase III clinical study in patients with 
hospital-acquired and ventilator-associated pneumonia, TDZ 
(200 mg/day for 6 days) was non-inferior to LNZ (600 mg 
twice daily for 10 days) in the primary outcome (28 days 
all-cause mortality). However, the non-inferiority of TDZ 
to LNZ was not established while comparing the secondary 
outcome (investigator-assessed clinical response at test of 
cure) [96]. There are no clear reasons for this discrepancy 
but the complexity of the disease and the subjectivity of 
defining “clinical cure” by clinicians can lead to this lack of 
consistency in the clinical outcomes. This is the first clinical 
investigation of TDZ in patients with pneumonia and further 
studies are needed to confirm these findings.

4.4.1  Safety Profile

Tedizolid was generally well tolerated in healthy volunteers 
as well as in multiple phase II and phase III studies and has 
a superior safety profile compared with LNZ. When evalu-
ated at a daily dose of 200–400 mg in a phase II study, 69% 
of the patients reported treatment-emergent adverse drug 
reactions (ADRs) [72.3% mild; 24.6% moderate] with nau-
sea (18.6%), headache (11.2%), and vomiting (10.1%) most 
predominant. None discontinued therapy because of TDZ-
induced ADRs [6]. In the two phase III trials for licensing 
(ESTABLISH 1 and 2), TDZ showed a superior safety pro-
file compared with LNZ. Gastrointestinal ADRs (nausea, 
vomiting, diarrhea, and dyspepsia) were frequently reported 
(16%), hence expanding the observations of phase II studies 
[29, 97]. When evaluated in pooled data across completed 
clinical studies (13 phase I, two phase II, and two phase III), 

drug-related ADRs were 27% of all participants. In line with 
previous results, gastrointestinal ADRs (13%) and headache 
(4%) were predominant [98]. However, none of these trials 
collected long-term (>3 weeks) safety data. While hema-
tological toxicity is a serious concern during prolonged 
LNZ therapy, TDZ showed a superior hematological safety 
profile as compared with LNZ with a lower incidence of 
thrombocytopenia (platelet counts, < 150,000 cells/mm3) 
at days 7–9: among the TDZ treatment group, thrombocy-
topenia was 3.2% compared with 5.6% in the LNZ treatment 
arm at standard human doses [99]. When administered for 
a longer duration (21 days), thrombocytopenia associated 
with TDZ administration was dose dependent: at a dose 
of 200 mg/day, no measurable difference in thrombocytes 
from baseline was observed while at 400 mg/day, up to a 
50% decrease was observed in 12.5% of the patients [99, 
100]. Further studies with similar findings suggest a lower 
impact of TDZ on the hematological profile [101]. However, 
because of the small sample size (n = 40) of the study, the 
long-term safety of TDZ necessitates further investigations. 
Studies with slightly longer durations (mean of 27–29 days) 
support these findings [102–104]. In ESTABLISH 1 and 2 
trials, neurological (~ 9%) and dermatological (~6%) toxici-
ties were almost equally often reported for both TDZ and 
LNZ, which were well supported in other studies [14, 90, 
91, 105]. Safety profiles of elderly individuals, adolescents, 
and children (aged 2–12 years), patients with cystic fibrosis, 
and renal and hepatically impaired patients were comparable 
to that of the adult population [15, 19, 20, 25, 106, 107]. 
The overall safety pattern of TDZ in post-marketing surveil-
lance in the ADR reports (2014–20) in the worldwide US 
Food and Drug Administration Adverse Events Reporting 
System was in line with the above results where no serious 
adverse effect was directly associated with TDZ [108]. For 
long-term safety, less structured data are available. Yet, in 
a recent study in patients with bone and joint infections (n 
= 33) where TDZ was administered for a mean duration of 
8 weeks at 200 mg/day, an overall high ADR rate (60%) 
was reported, and 18% of the patients discontinued the TDZ 
because of intolerance or severe anemia due to hemorrhage 
[109]. The results were comparable with overall ADR rates 
reported in non-tuberculosis mycobacterial infections after 
an average of 101 days of TDZ administration [110]. A 
retrospective single-center evaluation of 24 patients with 
non-tuberculosis mycobacteria infection with an average 7 
weeks of standard human doses of TDZ and LNZ showed no 
differences in hematological safely profiles [111]. Four case 
reports with long-term use of TDZ in an adolescent patient 
with pulmonary tuberculosis undergoing a liver transplant 
(20 months), in a patient with nocardiosis (6 months), in a 
patient with recurrent MRSA infection (18 months), and in a 
patient with cutaneous non-tuberculosis mycobacteria infec-
tion (8 months) showed no TDZ-induced toxicity [112–115]. 
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Although animal studies illustrated a lack of any neurologi-
cal change with long-term TDZ administration, long-term 
neurological safety studies in humans are lacking [116, 117]. 
The European Medicines Agency, although acknowledging 
an overall high safety profile for TDZ, indicate myelosup-
pression and peripheral neuropathy as potential risks associ-
ated with TDZ therapy in their risk management plan [118]. 
A notable increase in the off-label (particularly in terms of 
treatment duration) use of TDZ necessitates objective evi-
dence to justify its long-term safety [108]. A clinical sum-
mary of TDZ is provided in Table 3.

5  Resistance to TDZ and PK/PD Targets/
Magnitudes for Resistant Suppression

The main mechanisms of resistance against oxazolidinones 
comprise chromosomal mutations at the 23S ribosomal 
rRNA target site, mutations in the rplD gene encoding the 
50S ribosomal proteins (L3 and L4) [46, 119], plasmid-
born chromosomal mutations (cfr methyltransferase gene) 
[45, 120], and alteration of efflux with ABC transporters 
(e.g., Opt A) [120, 121]. Because of the presence of a dis-
tinct hydroxyethyl group in the molecular structure (Fig. 1), 
TDZ shows potency against some LNZ-resistant bacteria and 
stimulates a lower mutation frequency. A comparison of the 
frequency of resistant mutant selection to TDZ exposed to 
2× MIC of S. aureus (MRSA and MSSA) was <  10−10 to 
<  10−11, respectively, which was approximately two orders 
of magnitude lower than LNZ (1–5×10−9) [45, 120]. These 
findings were in line with Jones et al. where a single cell 
mutation was rare and no growth of S. aureus and E. faecium 
was observed at 4×, 6×, and 8× MIC of TDZ [46]. Serial pas-
sages of MRSA and MSSA to TDZ with a two-fold increas-
ing exposure (started from 4 mg/L) for 30 days resulted in 
no elevation in the MIC of MSSA. However, reduced sus-
ceptibility of MRSA was observed (0.25 vs 2 mg/L) [120]. 
Chen et al. reported a majority of the S. anginosus group 
(61.3%) to be non-susceptible to TDZ when the US Food 
and Drug Administration breakpoint of (≤0.25 mg/L) was 
applied, which was in contrast to previously reported studies 
by Prokocimer et al. and Zurenko et al. where S. anginosus 
was sensitive [122–124]. However, the study was conducted 
in a single center and needs further verification. Enterococ-
cal clinical isolates of E. faecalis from China showed ~6–13 
% of the studied isolates to be TDZ non-susceptible (MIC 
≥0.5 mg/L) [125]. The non-susceptible isolates displayed 
an abundant plasmid-mediated ABC transporter optrA [50, 
121]. Choudhury et al. also reported two clinical isolates (out 
of 48) of vanA E. faecium strains as ‘non-susceptible’ to TDZ 
(MIC 1–2 mg/L) [126]. In a recent study, two isolates of E. 
faecalis displayed TDZ MIC values of 2 mg/L (23S rRNA 
G2576T mutation). Tedizolid exhibited lowered sensitivity 

(MIC >0.5 mg/L) in LNZ-resistant VRE isolates in Ger-
many [127]. However, further systematic investigations are 
necessary to establish a correlation between previous LNZ 
resistance and TDZ susceptibility. In addition to the classi-
cal resistance mechanism (23S rRNA alteration), PoxtA and 
OptA gene mutations were also reported from the USA and 
Turkey from resistant Gram-positive clinical isolates [51].

Despite few less susceptible isolates that emerged in some 
studies with the expression of different genetic mutations, the 
incidence of TDZ resistance is still low in key clinically rel-
evant bacteria. However, the potential for the emergence of 
resistance and/or cross-resistance between the two oxazolidi-
nones will remain a concern and warrants active surveillance. 
Moreover, for isolates with undefined EUCAST susceptibility 
breakpoints, resistant data are lacking. More systematic inves-
tigations are required to define the mutant selection window 
in relation to the TDZ exposure profile for the entire treatment 
duration, in order to determine which PK/PD index is related 
to suppression of resistance development [128].

6  TDZ as a Potential Treatment Option 
Against Mycobacterium tuberculosis

The efficacy against mycobacteria, high pulmonary pen-
etration, and a favorable safety profile compared with LNZ 
makes TDZ a potential candidate to treat pulmonary tuber-
culosis caused by M. tuberculosis and in non-tuberculosis 
mycobacteria pulmonary infections [129]. Moreover, its high 
intracellular activity makes it an ideal potential candidate 
to treat intracellular mycobacterium tuberculosis infections. 
The TDZ MIC values against M. tuberculosis typically range 
from 0.125 to 1 mg/L [129–132].

Tedizolid shows superior anti-mycobacterial activity 
over LNZ and has potential to substitute LNZ in antituber-
cular combination regimens. When studied in a hollow fiber 
in vitro infection model against intracellular (disseminated 
pediatric tuberculosis model) mycobacterium tuberculosis 
(MIC: 0.5 mg/L) for 28 days (AUC 0–24 of 0–139.41 mg · 
h/L, elimination half-life of 12 h), the  EC80 (AUC 0–24/MIC 
ratio associated with 80% maximum bacterial kill) of TDZ 

Ring-D Ring-C Ring-B Ring-A

Fig. 1  The chemical structures of tedizolid
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associated with an optimal log kill and time to positivity 
(TTP) was nearly identical (184 vs 189) [133]. In a com-
parative study with a comparable  EC80 (TDZ 238.4 [MIC: 
0.5 mg/L] vs LNZ 24.05 [MIC: 1 mg/L]), TDZ showed a 
>10,000-fold higher activity than LNZ and hence supports 
TDZ as the preferable choice in intracellular antitubercular 
therapy in pulmonary cavities and in disseminated tubercu-
losis in children [133]. This superior activity of TDZ over 
LNZ was also observed for Mycobacterium avium-intra-
cellular complex in a separate in vitro study [134]. Srivas-
tava et al. further investigated TDZ against semi-dormant 
mycobacterium tuberculosis (MIC: 0.25 mg/L) in a hollow 
fiber in vitro infection model, where an  EC80 of 200 mg · 
h/L best related to the sterilizing effect (TTP), which was 
in line with the earlier reported value (188 mg · h/L). Using 
Monte Carlo simulations, at a human equivalent dose of 200 
mg/day (AUC 0–24 mg/L of 31.0 ± 6.6), >90 % of patients 
achieved  EC80 of 200 mg · h/L for an MIC of ≤0.5 mg/L and 
hence this value was declared as a tentative susceptibility 
breakpoint [135]. The mitochondrial toxicity, taken as an 
indirect toxicity predictor, was found lower for TDZ at expo-
sures in the above-mentioned study as compared with LNZ.

The dual combination with TDZ (200 mg/day) and high 
dose of MXF (800 mg/day) results in sterility (TTP assay) 
for both log-phase (after 14 days of therapy) and semi-dor-
mant forms (after 42 days of therapy) of mycobacterium 
tuberculosis in a hollow fiber in vitro infection model [136]. 
For the non-replicating persisters form, a triple therapy 
(TDZ 200 mg/day, MXF 800 mg/day, and faropenem twice 
daily to achieve 66% time above MIC) resulted in steriliza-
tion as early as 14 days of therapy compared with 21 days 
of therapy with the standard regimen (isoniazid 300 mg/day, 
rifampin 600 mg/day, and pyrazinamide 1.5 g/day) [136].

The above-mentioned results favor TDZ as an alternative 
to replace LNZ in MDR/XDR-TB therapeutic regimens while 
a dose of 200 mg/day can be a potential dose taken forward 
to these clinical studies. Combination therapy in mycobacte-
rium tuberculosis is usually favored for clinical success, better 
patient compliance, safety, and prevention of drug resistance, 
and hence the combination regimen, in particularly the triple 
therapy of TDZ, MXF, and faropenem, might be a favorable 
antibiotic combination to be further investigated in human 
studies. Although the in vitro results for a short duration (42 
days) propose comparable safety of TDZ, the long-term safety 
profile of TDZ therapy in patients with tuberculosis is lacking.

7  Conclusions

Tedizolid demonstrates broad in vitro and in vivo efficacy 
against a number of clinically important Gram-positive path-
ogens including MRSA and VRE. It is a viable treatment 

option against skin and skin-structure infections caused by 
these bacteria. Tedizolid has several advantages over LNZ 
with regard to dosing frequency and its safety profile. Fur-
ther research is required to investigate the contribution of the 
immune system to the efficacy of TDZ. Results from murine 
pulmonary models, PK studies in healthy volunteers, and a 
recent comparative clinical trial indicate its potential use 
in pulmonary infections, but more data on safety in long-
term use are needed to establish its role in mycobacterium 
tuberculosis treatment. Research in further potential clinical 
applications is warranted.
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